Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Phys Rev Lett ; 121(11): 112701, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30265109

RESUMEN

The ^{36}Ar(n,γ)^{37}Ar (t_{1/2}=35 d) and ^{38}Ar(n,γ)^{39}Ar (269 yr) reactions were studied for the first time with a quasi-Maxwellian (kT∼47 keV) neutron flux for Maxwellian average cross section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the ^{37}Ar/^{36}Ar and ^{39}Ar/^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The ^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of ^{36}Ar and ^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron-capture cross sections of ^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak s process. The new production cross sections have implications also for the use of ^{37}Ar and ^{39}Ar as environmental tracers in the atmosphere and hydrosphere.

3.
Science ; 335(6076): 1614-7, 2012 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-22461609

RESUMEN

The extinct p-process nuclide (146)Sm serves as an astrophysical and geochemical chronometer through measurements of isotopic anomalies of its α-decay daughter (142)Nd. Based on analyses of (146)Sm/(147)Sm α-activity and atom ratios, we determined the half-life of (146)Sm to be 68 ± 7 (1σ) million years, which is shorter than the currently used value of 103 ± 5 million years. This half-life value implies a higher initial (146)Sm abundance in the early solar system, ((146)Sm/(144)Sm)(0) = 0.0094 ± 0.0005 (2σ), than previously estimated. Terrestrial, lunar, and martian planetary silicate mantle differentiation events dated with (146)Sm-(142)Nd converge to a shorter time span and in general to earlier times, due to the combined effect of the new (146)Sm half-life and ((146)Sm/(144)Sm)(0) values.

4.
Phys Rev Lett ; 96(4): 041102, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16486801

RESUMEN

The 44Ti(t1/2=59 yr) nuclide, an important signature of supernova nucleosynthesis, has recently been observed as live radioactivity by gamma-ray astronomy from the Cas A remnant. We investigate in the laboratory the major 44Ti production reaction 40Ca(alpha, gamma)44Ti (Ec.m. approximately 0.6-1.2 MeV/u by direct off-line counting of 44Ti nuclei. The yield, significantly higher than inferred from previous experiments, is analyzed in terms of a statistical model using microscopic nuclear inputs. The associated stellar rate has important astrophysical consequences, increasing the calculated supernova 44Ti yield by a factor approximately 2 over previous estimates and bringing it closer to Cas A observations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...