Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(9): 2651-2655, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092865

RESUMEN

Many endogenous peptides rely on signaling pathways to exert their function, but identifying their cognate receptors remains a challenging problem. We investigate the use of AlphaFold-Multimer complex structure prediction together with transmembrane topology prediction for peptide deorphanization. We find that AlphaFold's confidence metrics have strong performance for prioritizing true peptide-receptor interactions. In a library of 1112 human receptors, the method ranks true receptors in the top percentile on average for 11 benchmark peptide-receptor pairs.


Asunto(s)
Péptidos , Transducción de Señal , Humanos , Péptidos/metabolismo
2.
BBA Adv ; 3: 100073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082259

RESUMEN

The phosphatidyl-inositol-4,5-bisphosphate (PIP2) lipid has been shown to be crucial for the coupling between the voltage sensor and the pore of the potassium voltage-gated KV7 channel family, especially the KV7.1 channel. Expressed in the myocardium membrane, KV7.1 forms a complex with KCNE1 auxiliary subunits to generate the IKS current. Here we present molecular models of the transmembrane region of this complex in its three known states, namely the Resting/Closed (RC), the Intermediate/Closed (IC), and the Activated/Open (AO), robustness of which is assessed by agreement with a range of biophysical data. Molecular Dynamics (MD) simulations of these models embedded in a lipid bilayer including phosphatidyl-inositol-4,5-bisphosphate (PIP2) lipids show that in presence of KCNE1, two PIP2 lipids are necessary to stabilize each state. The simulations also show that KCNE1 interacts with both PIP2 binding sites, forming a tourniquet around the pore and preventing its opening. The present investigation provides therefore key molecular elements that govern the role of PIP2 in KCNE1 modulation of IKS channels, possibly a common mechanism by which auxiliary KCNE subunits might modulate a variety of other ion channels.

3.
Chem Sci ; 13(11): 3256-3262, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35414877

RESUMEN

In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The diverse peptide libraries are genetically encoded in these technologies, allowing for next-generation sequencing to be used to efficiently identify the binding ligands. Despite the vast datasets that can be generated, current downstream methodologies, however, are limited by low throughput validation processes, including hit prioritisation, peptide synthesis, biochemical and biophysical assays. In this work we report a highly efficient strategy that combines bioinformatic analysis with state-of-the-art high throughput peptide synthesis to identify nanomolar cyclic peptide (CP) ligands of the human glucose-dependent insulinotropic peptide receptor (hGIP-R). Furthermore, our workflow is able to discriminate between functional and remote binding non-functional ligands. Efficient structure-activity relationship analysis (SAR) combined with advanced in silico structural studies allow deduction of a thorough and holistic binding model which informs further chemical optimisation, including efficient half-life extension. We report the identification and design of the first de novo, GIP-competitive, incretin receptor family-selective CPs, which exhibit an in vivo half-life up to 10.7 h in rats. The workflow should be generally applicable to any selection target, improving and accelerating hit identification, validation, characterisation, and prioritisation for therapeutic development.

4.
Biophys J ; 121(1): 11-22, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34890580

RESUMEN

Voltage-gated sodium (Nav) channels play critical roles in propagating action potentials and otherwise manipulating ionic gradients in excitable cells. These channels open in response to membrane depolarization, selectively permeating sodium ions until rapidly inactivating. Structural characterization of the gating cycle in this channel family has proved challenging, particularly due to the transient nature of the open state. A structure from the bacterium Magnetococcus marinus Nav (NavMs) was initially proposed to be open, based on its pore diameter and voltage-sensor conformation. However, the functional annotation of this model, and the structural details of the open state, remain disputed. In this work, we used molecular modeling and simulations to test possible open-state models of NavMs. The full-length experimental structure, termed here the α-model, was consistently dehydrated at the activation gate, indicating an inability to conduct ions. Based on a spontaneous transition observed in extended simulations, and sequence/structure comparison to other Nav channels, we built an alternative π-model featuring a helix transition and the rotation of a conserved asparagine residue into the activation gate. Pore hydration, ion permeation, and state-dependent drug binding in this model were consistent with an open functional state. This work thus offers both a functional annotation of the full-length NavMs structure and a detailed model for a stable Nav open state, with potential conservation in diverse ion-channel families.


Asunto(s)
Asparagina , Canales de Sodio Activados por Voltaje , Potenciales de Acción/fisiología , Humanos , Modelos Moleculares , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/química
5.
J Biol Chem ; 296: 100573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33766560

RESUMEN

Regulation of the heat- and capsaicin-activated transient receptor potential vanilloid 1 (TRPV1) channel by phosphoinositides is complex and controversial. In the most recent TRPV1 cryo-EM structure, endogenous phosphatidylinositol (PtdIns) was detected in the vanilloid binding site, and phosphoinositides were proposed to act as competitive vanilloid antagonists. This model is difficult to reconcile with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] being a well-established positive regulator of TRPV1. Here we show that in the presence of PtdIns(4,5)P2 in excised patches, PtdIns, but not PtdIns(4)P, partially inhibited TRPV1 activity at low, but not at high capsaicin concentrations. This is consistent with PtdIns acting as a competitive vanilloid antagonist. However, in the absence of PtdIns(4,5)P2, PtdIns partially stimulated TRPV1 activity. We computationally identified residues, which are in contact with PtdIns, but not with capsaicin in the vanilloid binding site. The I703A mutant of TRPV1 showed increased sensitivity to capsaicin, as expected when removing the effect of an endogenous competitive antagonist. I703A was not inhibited by PtdIns in the presence of PtdIns(4,5)P2, but it was still activated by PtdIns in the absence of PtdIns(4,5)P2 indicating that inhibition, but not activation by PtdIns proceeds via the vanilloid binding site. In molecular dynamics simulations, PtdIns was more stable than PtdIns(4,5)P2 in this inhibitory site, whereas PtdIns(4,5)P2 was more stable than PtdIns in a previously identified, nonoverlapping, putative activating binding site. Our data indicate that phosphoinositides regulate channel activity via functionally distinct binding sites, which may explain some of the complexities of the effects of these lipids on TRPV1.


Asunto(s)
Fosfatidilinositoles/farmacología , Canales Catiónicos TRPV/metabolismo , Sitios de Unión , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética
6.
Biophys J ; 119(1): 190-205, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32559411

RESUMEN

Pulsed electric fields are increasingly used in medicine to transiently increase the cell membrane permeability via electroporation to deliver therapeutic molecules into the cell. One type of event that contributes to this increase in membrane permeability is the formation of pores in the membrane lipid bilayer. However, electrophysiological measurements suggest that membrane proteins are affected as well, particularly voltage-gated ion channels (VGICs). The molecular mechanisms by which the electric field could affects these molecules remain unidentified. In this study, we used molecular dynamics simulations to unravel the molecular events that take place in different VGICs when exposing them to electric fields mimicking electroporation conditions. We show that electric fields can induce pores in the voltage-sensor domains (VSDs) of different VGICs and that these pores form more easily in some channels than in others. We demonstrate that poration is more likely in VSDs that are more hydrated and are electrostatically more favorable for the entry of ions. We further show that pores in VSDs can expand into so-called complex pores, which become stabilized by lipid headgroups. Our results suggest that such complex pores are considerably more stable than conventional lipid pores, and their formation can lead to severe unfolding of VSDs from the channel. We anticipate that such VSDs become dysfunctional and unable to respond to changes in transmembrane voltage, which is in agreement with previous electrophysiological measurements showing a decrease in the voltage-dependent transmembrane ionic currents after pulse treatment. Finally, we discuss the possibility of activation of VGICs by submicrosecond-duration pulses. Overall, our study reveals a new, to our knowledge, mechanism of electroporation through membranes containing VGICs.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Permeabilidad de la Membrana Celular , Electroporación , Canales Iónicos
7.
Nat Commun ; 11(1): 676, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015334

RESUMEN

In voltage-gated potassium (KV) channels, the voltage-sensing domain (VSD) undergoes sequential activation from the resting state to the intermediate state and activated state to trigger pore opening via electro-mechanical (E-M) coupling. However, the spatial and temporal details underlying E-M coupling remain elusive. Here, utilizing KV7.1's unique two open states, we report a two-stage E-M coupling mechanism in voltage-dependent gating of KV7.1 as triggered by VSD activations to the intermediate and then activated state. When the S4 segment transitions to the intermediate state, the hand-like C-terminus of the VSD-pore linker (S4-S5L) interacts with the pore in the same subunit. When S4 then proceeds to the fully-activated state, the elbow-like hinge between S4 and S4-S5L engages with the pore of the neighboring subunit to activate conductance. This two-stage hand-and-elbow gating mechanism elucidates distinct tissue-specific modulations, pharmacology, and disease pathogenesis of KV7.1, and likely applies to numerous domain-swapped KV channels.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/fisiología , Humanos , Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/fisiología , Simulación del Acoplamiento Molecular , Oocitos/metabolismo , Canales de Potasio , Conformación Proteica
8.
Biophys J ; 118(3): 765-780, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31952811

RESUMEN

Biomolecular simulations are intrinsically high dimensional and generate noisy data sets of ever-increasing size. Extracting important features from the data is crucial for understanding the biophysical properties of molecular processes, but remains a big challenge. Machine learning (ML) provides powerful dimensionality reduction tools. However, such methods are often criticized as resembling black boxes with limited human-interpretable insight. We use methods from supervised and unsupervised ML to efficiently create interpretable maps of important features from molecular simulations. We benchmark the performance of several methods, including neural networks, random forests, and principal component analysis, using a toy model with properties reminiscent of macromolecular behavior. We then analyze three diverse biological processes: conformational changes within the soluble protein calmodulin, ligand binding to a G protein-coupled receptor, and activation of an ion channel voltage-sensor domain, unraveling features critical for signal transduction, ligand binding, and voltage sensing. This work demonstrates the usefulness of ML in understanding biomolecular states and demystifying complex simulations.


Asunto(s)
Aprendizaje Automático , Proteínas , Humanos , Conformación Proteica
9.
Biophys J ; 118(4): 861-872, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31630811

RESUMEN

Despite the sequence homology between acid-sensing ion channels (ASICs) and epithelial sodium channel (ENaCs), these channel families display very different functional characteristics. Whereas ASICs are gated by protons and show a relatively low degree of selectivity for sodium over potassium, ENaCs are constitutively active and display a remarkably high degree of sodium selectivity. To decipher if some of the functional diversity originates from differences within the transmembrane helices (M1 and M2) of both channel families, we turned to a combination of computational and functional interrogations, using statistical coupling analysis and mutational studies on mouse ASIC1a. The coupling analysis suggests that the relative position of M1 and M2 in the upper part of the pore domain is likely to remain constant during the ASIC gating cycle, whereas they may undergo relative movements in the lower part. Interestingly, our data suggest that to account for coupled residue pairs being in close structural proximity, both domain-swapped and nondomain-swapped ASIC M2 conformations need to be considered. Such conformational flexibility is consistent with structural work, which suggested that the lower part of M2 can adopt both domain-swapped and nondomain-swapped conformations. Overall, mutations to residues in the middle and lower pore were more likely to affect gating and/or ion selectivity than those in the upper pore. Indeed, disrupting the putative interaction between a highly conserved Trp/Glu residue pair in the lower pore is detrimental to gating and selectivity, although this interaction might occur in both domain-swapped and nonswapped conformations. Finally, our results suggest that the greater number of larger, aromatic side chains in the ENaC M2 helix may contribute to the constitutive activity of these channels at a resting pH. Together, the data highlight differences in the transmembrane domains of these closely related ion channels that may help explain some of their distinct functional properties.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Canales Epiteliales de Sodio , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Ratones , Conformación Molecular , Protones , Sodio/metabolismo
10.
Elife ; 82019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31774399

RESUMEN

In contrast to most voltage-gated ion channels, hyperpolarization- and cAMP gated (HCN) ion channels open on hyperpolarization. Structure-function studies show that the voltage-sensor of HCN channels are unique but the mechanisms that determine gating polarity remain poorly understood. All-atom molecular dynamics simulations (~20 µs) of HCN1 channel under hyperpolarization reveals an initial downward movement of the S4 voltage-sensor but following the transfer of last gating charge, the S4 breaks into two sub-helices with the lower sub-helix becoming parallel to the membrane. Functional studies on bipolar channels show that the gating polarity strongly correlates with helical turn propensity of the substituents at the breakpoint. Remarkably, in a proto-HCN background, the replacement of breakpoint serine with a bulky hydrophobic amino acid is sufficient to completely flip the gating polarity from inward to outward-rectifying. Our studies reveal an unexpected mechanism of inward rectification involving a linker sub-helix emerging from HCN S4 during hyperpolarization.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Regulación Alostérica , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
11.
Bioelectrochemistry ; 125: 46-57, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30265863

RESUMEN

Electroporation or electropermeabilization is a technique that enables transient increase in the cell membrane permeability by exposing cells to pulsed electric field. However, the molecular mechanisms of the long-lived cell membrane permeability, which persists on the minutes time scale after the pulse treatment, remain elusive. Experimental studies have suggested that lipid peroxidation could present a mechanism of this prolonged membrane permeabilization. In this study we make the first important step in quantifying the possible contribution of lipid peroxidation to electropermeabilization. We use free energy calculations to quantify the permeability and conductance of bilayers, containing an increasing percentage of hydroperoxide lipid derivatives, to sodium and chloride ions. We then compare our calculations to experimental measurements on electropermeabilized cells. Our results show that the permeability and conductance increase dramatically by several orders of magnitude in peroxidized bilayers. Yet this increase is not sufficient to reasonably account for the entire range of experimental measurements. Nevertheless, lipid peroxidation might be considered an important mechanism of prolonged membrane permeabilization, if exposure of cells to high voltage electric pulses leads to secondary lipid peroxidation products. Our analysis calls for experimental studies, which will determine the type and amount of lipid peroxidation products in electropermeabilized cell membranes.


Asunto(s)
Permeabilidad de la Membrana Celular , Electroporación , Membrana Dobles de Lípidos/metabolismo , Peroxidación de Lípido , Lípidos de la Membrana/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Cloruros/metabolismo , Difusión , Electroporación/métodos , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Simulación de Dinámica Molecular , Sodio/metabolismo , Termodinámica
12.
Chemphyschem ; 20(2): 260-267, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30151973

RESUMEN

Genetically encoded (GE) contrast agents detectable by magnetic resonance imaging (MRI) enable non-invasive visualization of gene expression and cell proliferation at virtually unlimited penetration depths. Using hyperpolarized 129 Xe in combination with chemical exchange saturation transfer, an MR contrast approach known as hyper-CEST, enables ultrasensitive protein detection and biomolecular imaging. GE MRI contrast agents developed to date include nanoscale proteinaceous gas vesicles as well as the monomeric bacterial proteins TEM-1 ß-lactamase (bla) and maltose binding protein (MBP). To improve understanding of hyper-CEST NMR with proteins, structural and computational studies were performed to further characterize the Xe-bla interaction. X-ray crystallography validated the location of a high-occupancy Xe binding site predicted by MD simulations, and mutagenesis experiments confirmed this Xe site as the origin of the observed CEST contrast. Structural studies and MD simulations with representative bla mutants offered additional insight regarding the relationship between local protein structure and CEST contrast.


Asunto(s)
Isótopos de Xenón/química , beta-Lactamasas/química , Sitio Alostérico , Sitios de Unión , Medios de Contraste/química , Cristalografía por Rayos X , Límite de Detección , Proteínas de Unión a Maltosa/química , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
13.
J Gen Physiol ; 150(11): 1554-1566, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30333107

RESUMEN

The transient receptor potential channel vanilloid type 1 (TRPV1) is activated by a variety of endogenous and exogenous stimuli and is involved in nociception and body temperature regulation. Although the structure of TRPV1 has been experimentally determined in both the closed and open states, very little is known about its activation mechanism. In particular, the conformational changes that occur in the pore domain and result in ionic conduction have not yet been identified. Here we suggest a hypothetical molecular mechanism for TRPV1 activation, which involves rotation of a conserved asparagine in S6 from a position facing the S4-S5 linker toward the pore. This rotation is associated with hydration of the pore and dehydration of the four peripheral cavities located between each S6 and S4-S5 linker. In light of our hypothesis, we perform bioinformatics analyses of TRP and other evolutionary related ion channels, evaluate newly available structures, and reexamine previously reported water accessibility and mutagenesis experiments. These analyses provide several independent lines of evidence to support our hypothesis. Finally, we show that our proposed molecular mechanism is compatible with the prevailing theory that the selectivity filter acts as a secondary gate in TRPV1.


Asunto(s)
Canales Catiónicos TRPV/metabolismo , Asparagina , Simulación de Dinámica Molecular , Conformación Proteica , Rotación
14.
Nat Commun ; 9(1): 4198, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305626

RESUMEN

TRPV5 is a transient receptor potential channel involved in calcium reabsorption. Here we investigate the interaction of two endogenous modulators with TRPV5. Both phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and calmodulin (CaM) have been shown to directly bind to TRPV5 and activate or inactivate the channel, respectively. Using cryo-electron microscopy (cryo-EM), we determined TRPV5 structures in the presence of dioctanoyl PI(4,5)P2 and CaM. The PI(4,5)P2 structure reveals a binding site between the N-linker, S4-S5 linker and S6 helix of TRPV5. These interactions with PI(4,5)P2 induce conformational rearrangements in the lower gate, opening the channel. The CaM structure reveals two TRPV5 C-terminal peptides anchoring a single CaM molecule and that calcium inhibition is mediated through a cation-π interaction between Lys116 on the C-lobe of calcium-activated CaM and Trp583 at the intracellular gate of TRPV5. Overall, this investigation provides insight into the endogenous modulation of TRPV5, which has the potential to guide drug discovery.


Asunto(s)
Activación del Canal Iónico , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Animales , Calmodulina/metabolismo , Modelos Biológicos , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato , Conejos , Relación Estructura-Actividad , Canales Catiónicos TRPV/antagonistas & inhibidores
15.
J Gen Physiol ; 150(10): 1444-1458, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30150239

RESUMEN

Voltage-sensitive membrane proteins are united by their ability to transform changes in membrane potential into mechanical work. They are responsible for a spectrum of physiological processes in living organisms, including electrical signaling and cell-cycle progression. Although the mechanism of voltage-sensing has been well characterized for some membrane proteins, including voltage-gated ion channels, even the location of the voltage-sensing elements remains unknown for others. Moreover, the detection of these elements by using experimental techniques is challenging because of the diversity of membrane proteins. Here, we provide a computational approach to predict voltage-sensing elements in any membrane protein, independent of its structure or function. It relies on an estimation of the propensity of a protein to respond to changes in membrane potential. We first show that this property correlates well with voltage sensitivity by applying our approach to a set of voltage-sensitive and voltage-insensitive membrane proteins. We further show that it correctly identifies authentic voltage-sensitive residues in the voltage-sensor domain of voltage-gated ion channels. Finally, we investigate six membrane proteins for which the voltage-sensing elements have not yet been characterized and identify residues and ions that might be involved in the response to voltage. The suggested approach is fast and simple and enables a characterization of voltage sensitivity that goes beyond mere identification of charges. We anticipate that its application before mutagenesis experiments will significantly reduce the number of potential voltage-sensitive elements to be tested.


Asunto(s)
Canales Iónicos/fisiología , Potenciales de la Membrana , Simulación de Dinámica Molecular , Electricidad
16.
J Phys Chem Lett ; 9(6): 1260-1264, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29439562

RESUMEN

The nonselective cation channel TRPV1 is responsible for transducing noxious stimuli into action potentials propagating through peripheral nerves. It is activated by temperatures greater than 43 °C, while remaining completely nonconductive at temperatures lower than this threshold. The origin of this sharp response, which makes TRPV1 a biological temperature sensor, is not understood. Here we used molecular dynamics simulations and free energy calculations to characterize the molecular determinants of the transition between nonconductive and conductive states. We found that hydration of the pore and thus ion permeation depends critically on the polar character of its molecular surface: in this narrow hydrophobic enclosure, the motion of a polar side-chain is sufficient to stabilize either the dry or wet state. The conformation of this side-chain is in turn coupled to the hydration state of four peripheral cavities, which undergo a dewetting transition at the activation temperature.


Asunto(s)
Simulación de Dinámica Molecular , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Movimiento , Porosidad , Conformación Proteica , Termodinámica
17.
J Membr Biol ; 251(3): 419-430, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29476260

RESUMEN

Viral potassium channels (Kcv) are homologous to the pore module of complex [Formula: see text]-selective ion channels of cellular organisms. Due to their relative simplicity, they have attracted interest towards understanding the principles of [Formula: see text] conduction and channel gating. In this work, we construct a homology model of the [Formula: see text] open state, which we validate by studying the binding of known blockers and by monitoring ion conduction through the channel. Molecular dynamics simulations of this model reveal that the re-orientation of selectivity filter carbonyl groups coincides with the transport of potassium ions, suggesting a possible mechanism for fast gating. In addition, we show that the voltage sensitivity of this mechanism can originate from the relocation of potassium ions inside the selectivity filter. We also explore the interaction of [Formula: see text] with the surrounding bilayer and observe the binding of lipids in the area between two adjacent subunits. The model is available to the scientific community to further explore the structure/function relationship of Kcv channels.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Potasio/metabolismo , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Simulación de Dinámica Molecular , Conformación Proteica
18.
Methods Mol Biol ; 1684: 321-341, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29058202

RESUMEN

In recent years, molecular modeling techniques, combined with MD simulations, provided significant insights on voltage-gated (Kv) potassium channels intrinsic properties. Among the success stories are the highlight of molecular level details of the effects of mutations, the unraveling of several metastable intermediate states, and the influence of a particular lipid, PIP2, in the stability and the modulation of Kv channel function. These computational studies offered a detailed view that could not have been reached through experimental studies alone. With the increase of cross disciplinary studies, numerous experiments provided validation of these computational results, which endows an increase in the reliability of molecular modeling for the study of Kv channels. This chapter offers a description of the main techniques used to model Kv channels at the atomistic level.


Asunto(s)
Biología Computacional/métodos , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Estabilidad Proteica , Homología Estructural de Proteína
19.
Elife ; 62017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29206105

RESUMEN

TRPV1 channels support the detection of noxious and nociceptive input. Currently available functional and structural data suggest that TRPV1 channels have two gates within their permeation pathway: one formed by a 'bundle-crossing' at the intracellular entrance and a second constriction at the selectivity filter. To describe conformational changes associated with channel gating, the fluorescent non-canonical amino acid coumarin-tyrosine was genetically encoded at Y671, a residue proximal to the selectivity filter. Total internal reflection fluorescence microscopy was performed to image the conformational dynamics of the channels in live cells. Photon counts and optical fluctuations from coumarin encoded within TRPV1 tetramers correlates with channel activation by capsaicin, providing an optical marker of conformational dynamics at the selectivity filter. In agreement with the fluorescence data, molecular dynamics simulations display alternating solvent exposure of Y671 in the closed and open states. Overall, the data point to a dynamic selectivity filter that may serve as a gate for permeation.


Cells use proteins on their surface as sensors to help them to assess and explore their environments and adapt to external conditions. The transient receptor potential (TRP) ion channels form one such family of proteins. Sodium, potassium and calcium ions can move through TRP channels to enter and exit cells, and by doing so trigger changes in the cell that help it respond to an external stimulus. The channels have physical "gates" that can open and close to control the flow of the ions. When the TRP channel detects a stimulus ­ which could take the form of specific chemicals, or a change in temperature, pressure or voltage ­ it changes shape, causing the gate to open. Researchers have a number of unanswered questions about how TRP channels work. Where in the channels are gates located? How do the channels control the flow of ions, and how do they communicate with each other? And which regions of the protein sense environmental cues? As a result, new technologies are being developed to make it easier to study the types of rearrangements that TRP channels experience when they activate. Steinberg, Kasimova et al. have used total internal reflection microscopy ­ a method that images fluorescent molecules ­ to measure the conformational change of a single TRP channel in a living cell. This channel, called TRPV1, senses external heat and plays an important role in pain perception. Its gate can also be opened by the pungent compound of chili pepper, capsaicin. The results of the experiments suggest that a selectivity filter region in TRPV1 channels changes its shape when the channel opens in response to capsaicin. Then, this selectivity filter appears to do double duty ­ it controls which types of ions pass through the channels as well as controlling their flow rate. Because of its role in pain perception, having a better understanding of how TRPV1 works will be valuable for researchers who are trying to develop new pain relief treatments. The so-called 'seeing is believing' method used by Steinberg, Kasimova et al. could also be used to study other membrane proteins, both to guide drug development and to improve our understanding of how cells interact with their environment.


Asunto(s)
Cumarinas/análisis , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Tirosina/análisis , Capsaicina/metabolismo , Células HEK293 , Humanos , Microscopía Intravital , Microscopía Fluorescente , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Coloración y Etiquetado , Canales Catiónicos TRPV/genética
20.
Sci Rep ; 6: 27652, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27291418

RESUMEN

Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca(2+)-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6.


Asunto(s)
Canales de Calcio/metabolismo , Fosfatidilinositoles/química , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/química , Canales de Calcio/genética , Ciona intestinalis , Simulación por Computador , Células HEK293 , Humanos , Lípidos/química , Conformación Molecular , Simulación del Acoplamiento Molecular , Mutación , Oocitos/citología , Técnicas de Placa-Clamp , Fosfolipasas/química , Unión Proteica , Conformación Proteica , Canales Catiónicos TRPV/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA