Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928332

RESUMEN

CD147 is upregulated in cancers, including aggressive T-ALL. Traditional treatments for T-ALL often entail severe side effects and the risk of relapse, highlighting the need for more efficacious therapies. ADCP contributes to the antitumor response by enhancing the ability of phagocytic cells to engulf cancer cells upon antibody binding. We aimed to engineer CD147KO THP-1 cells and evaluated their differentiation properties compared to the wild type. A humanized anti-CD147 antibody, HuM6-1B9, was also constructed for investing the phagocytic function of CD147KO THP-1 cells mediated by HuM6-1B9 in the phagocytosis of Jurkat T cells. The CD147KO THP-1 was generated by CRISPR/Cas9 and maintained polarization profiles. HuM6-1B9 was produced in CHO-K1 cells and effectively bound to CD147 with high binding affinity (KD: 2.05 ± 0.30 × 10-9 M). Additionally, HuM6-1B9 enhanced the phagocytosis of Jurkat T cells by CD147KO THP-1-derived LPS-activated macrophages (M-LPS), without self-ADCP. The formation of THP-1-derived mMDSC was limited in CD147KO THP-1 cells, highlighting the significant impact of CD147 deletion. Maintaining expression markers and phagocytic function in CD147KO THP-1 macrophages supports future engineering and the application of induced pluripotent stem cell-derived macrophages. The combination of HuM6-1B9 and CD147KO monocyte-derived macrophages holds promise as an alternative strategy for T-ALL.


Asunto(s)
Basigina , Diferenciación Celular , Fagocitosis , Humanos , Células Jurkat , Basigina/metabolismo , Basigina/genética , Células THP-1 , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Animales , Células CHO , Cricetulus , Monocitos/metabolismo , Monocitos/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Sistemas CRISPR-Cas
2.
Immunology ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922845

RESUMEN

The explicit identification of CD8+ T cell subpopulation is important for deciphering the role of CD8+ T cells for protecting our body against invading pathogens and cancer. Our generated monoclonal antibody (mAb), named FE-1H10, recognized two novel subpopulations of peripheral blood CD8+ T cells, FE-1H10+ and FE-1H10- CD8+ T cells. The molecule recognized by mAb FE-1H10 (FE-1H10 molecules) had a higher distribution on effector memory CD8+ T cell subsets. The functions of FE-1H10- and FE-1H10+ CD8+ T cells were investigated. T cell proliferation assays revealed that FE-1H10- CD8+ T cells exhibited a higher proliferation rate than FE-1H10+ CD8+ T cells, whereas FE-1H10+ CD8+ T cells produced higher levels of IFN-γ and TNF-α than FE-1H10- CD8+ T cells. In T cell cytotoxicity assays, FE-1H10+ CD8+ T cells were able to kill target cells better than FE-1H10- CD8+ T cells. RNA-sequencing analysis confirmed that these subpopulations were distinct: FE-1H10+ CD8+ T cells have higher expression of genes involved in effector functions (IFNG, TNF, GZMB, PRF1, GNLY, FASL, CX3CR1) while FE-1H10- CD8+ T cells have greater expression of genes related to memory CD8+ T cell populations (CCR7, SELL, TCF7, CD40LG). The results suggested that mAb FE-1H10 identifies two novel distinctive CD8+ T cell subpopulations. The FE-1H10+ CD8+ T cells carried a superior functionality in response to tumour cells. The uncover of these novel CD8+ T cell subpopulations may be the basis knowledge of an optional immunotherapy for the selection of potential CD8+ T cells in cancer treatment.

3.
Antibodies (Basel) ; 13(2)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804310

RESUMEN

CD99 was demonstrated to be a potential target for antibody therapy on T-acute lymphoblastic leukemia (T-ALL). The ligation of CD99 by certain monoclonal antibodies (mAbs) induced T-ALL apoptosis. However, the molecular basis contributing to the apoptosis of T-ALL upon anti-CD99 mAb engagement remains elusive. In this study, using our generated anti-CD99 mAb clone MT99/3 (mAb MT99/3), mAb MT99/3 engagement strongly induced apoptosis of T-ALL cell lines, but not in non-malignant peripheral blood cells. By transcriptome analysis, upon mAb MT99/3 ligation, 13 apoptosis-related genes, including FOS, TNF, FASLG, BCL2A1, JUNB, SOCS1, IL27RA, PTPN6, PDGFA, NR4A1, SGK1, LPAR5 and LTB, were significantly upregulated. The epitope of CD99 recognized by mAb MT99/3 was then identified as the VDGENDDPRPP at residues 60-70 of CD99, which has never been reported. To the best of our knowledge, this is the first transcriptome data conducted in T-ALL with anti-CD99 mAb engagement. These findings provide new insights into CD99 implicated in the apoptosis of T-ALL. The identification of a new epitope and apoptosis-related genes that relate to the induction of apoptosis by mAb MT99/3 may serve as a new therapeutic target for T-ALL. The anti-CD99 mAb clone MT99/3 might be a candidate for further development of a therapeutic antibody for T-ALL therapy.

4.
Explor Target Antitumor Ther ; 5(1): 96-107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468825

RESUMEN

Monoclonal antibodies (mAbs) are an effective drug for targeted immunotherapy in several cancer types. However, so far, no antibody has been successfully developed for certain types of cancer, including T-cell acute lymphoblastic leukemia (T-ALL). T-ALL is an aggressive hematologic malignancy. T-ALL patients who are treated with chemotherapeutic drugs frequently relapse and become drug resistant. Therefore, antibody-based therapy is promising for T-ALL treatment. To successfully develop an antibody-based therapy for T-ALL, antibodies that induce death in malignant T cells but not in nonmalignant T cells are required to avoid the induction of secondary T-cell immunodeficiency. In this review, CD99 tumor associated antigen, which is highly expressed on malignant T cells and lowly expressed on nonmalignant T cells, is proposed to be a potential target for antibody therapy of T-ALL. Since certain clones of anti-CD99 mAbs induce apoptosis only in malignant T cells, these anti-CD99 mAbs might be a promising antibody drug for the treatment of T-ALL with high efficiency and low adverse effects. Moreover, over the past 25 years, many clones of anti-CD99 mAbs have been studied for their direct effects on T-ALL. These outcomes are gathered here.

6.
Vaccine ; 41(40): 5901-5909, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599143

RESUMEN

BACKGROUND: Data on humoral and cellular immune responses against SARS-CoV-2 after receiving heterologous CoronaVac/ChAdOx-1 (CoVac/ChAd) vaccination in subjects with chronic obstructive pulmonary disease (COPD) are still limited. Therefore, we determined the neutralizing antibody (NAb) and T-cell responses against SARS-CoV-2 wild type (WT) and variants of concern (VOCs) in COPD patients. METHODS: The levels of NAb as well as specific CD4 and CD8 T-cell responses against SARS-CoV-2 WT and VOCs were determined in COPD patients before and after vaccination. RESULTS: Four weeks after vaccinations, the median levels of % inhibition of NAb against SARS-CoV-2 WT, Alpha, Beta, and Delta variants were significantly higher compared to pre-vaccination. The induction of NAb against Omicron was very low compared to other variants. At four weeks after vaccination, in comparison to pre-vaccination, the increasing trend of TNF-α-, IFN-γ-, IL-4-, IL-17-, IL-10-, and FasL-producing CD4 T-cells upon stimulation with WT spike peptides were demonstrated. No difference in T-cell responses to spike peptides of Alpha, Beta, and Delta variants and their WT homologs was observed. CONCLUSION: Heterologous CoVac/ChAd vaccine induced the production of NAb against SARS-CoV-2 WT, Alpha, Beta, and Delta variants, but low for Omicron in COPD patients. Induction of CD4 T-cell subset responses was slightly observed by this vaccine regimen. CLINICAL TRIALS REGISTRY: This study was approved by the Clinical Trials Registry (Study ID: TCTR20210822002).


Asunto(s)
COVID-19 , SARS-CoV-2 , Anciano , Humanos , Anticuerpos Neutralizantes , COVID-19/prevención & control , Vacunación
7.
Artículo en Inglés | MEDLINE | ID: mdl-37302098

RESUMEN

BACKGROUND: CD4, a leukocyte surface glycoprotein, is mainly expressed on CD4+ T cells, but is also expressed on monocytes. The difference in the expression level and structure of CD4 on T cells and monocytes predicts the different functions of this molecule in both cell types. Although the function of CD4 on T cells is well characterized, little is known about that expressed on primary monocytes. OBJECTIVE: In this study, we investigated the immunoregulation function of CD4 on peripheral blood monocytes. METHODS: Methods: CD4 molecule on monocyte was ligated by anti-CD4 monoclonal antibody (mAb), MT4/3. The effect of mAb MT4/3 on T cell proliferation, cytokine production, the expression of monocyte costimulatory molecules, monocyte migration, and macrophage differentiation were investigated. Moreover, the molecular weight of CD4 on peripheral blood monocyte was carried out by Western immunoblotting. RESULTS: We demonstrated that mAb MT4/3 inhibited anti-CD3 induced T cell proliferation, cytokine production, and the expression of monocyte costimulatory molecules. The ligation of only CD4 on monocytes was sufficient to inhibit T cell activation. Moreover, mAb MT4/3 could inhibit monocyte migration in a transwell migration assay, but not affect the differentiation of monocytes to macrophages. Using purified primary monocytes, the molecular weight of CD4 expressed on monocytes was identified as 55 kDa. CONCLUSIONS: The CD4 molecule expressed on monocytes might play an important role in the regulation of immune responses in both innate and adaptive immunity. Understanding the novel role of CD4 on monocytes in immunoregulation is valuable in the development of new therapeutic approaches.

8.
ACS Omega ; 8(20): 17932-17940, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251123

RESUMEN

Human immunodeficiency virus (HIV) causing acquired immune deficiency syndrome (AIDS) is still a global issue. Long-term drug treatment and nonadherence to medication increase the spread of drug-resistant HIV strains. Therefore, the identification of new lead compounds is being investigated and is highly desirable. Nevertheless, a process generally necessitates a significant budget and human resources. In this study, a simple biosensor platform for semi-quantification and verification of the potency of HIV protease inhibitors (PIs) based on electrochemically detecting the cleavage activity of the HIV-1 subtype C-PR (C-SA HIV-1 PR) was proposed. An electrochemical biosensor was fabricated by immobilizing His6-matrix-capsid (H6MA-CA) on the electrode surface via the chelation to Ni2+-nitrilotriacetic acid (NTA) functionalized GO. The functional groups and the characteristics of modified screen-printed carbon electrodes (SPCE) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). C-SA HIV-1 PR activity and the effect of PIs were validated by recording changes in electrical current signals of the ferri/ferrocyanide redox probe. The detection of PIs, i.e., lopinavir (LPV) and indinavir (IDV), toward the HIV protease was confirmed by the decrease in the current signals in a dose-dependent manner. In addition, our developed biosensor demonstrates the ability to distinguish the potency of two PIs to inhibit C-SA HIV-1 PR activities. We anticipated that this low-cost electrochemical biosensor would increase the efficiency of the lead compound screening process and accelerate the discovery and development of new HIV drugs.

9.
Heliyon ; 9(4): e15653, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37095993

RESUMEN

The outbreak of the SARS-CoV-2 Omicron variant raised the need for vaccine boosting. We evaluated the efficiency of the third booster vaccine, ChAdOx-1 or BNT162b2, in causing a neutralizing antibody (NAb) response and its durability against the Omicron and other variants in elderly individuals previously vaccinated with 2-dose CoronaVac inactivated vaccine. After receiving 2-dose CoronaVac, only 2.2% of subjects had NAbs against the Omicron variant above the cut-off value. Four weeks after boosting, the number of subjects who had NAb levels above the cut-off values in the ChAdOx-1 and BNT162b2 vaccine boosting groups increased to 41.7% and 54.5%, respectively. However, after 12 and 24 weeks of boosting with any vaccines, NAb levels against the Omicron variant dramatically waned. Twenty-four weeks after boosting, only 2% had high levels of NAbs against the Omicron variant. Compared to other variants, the Omicron variant was less responsive to boosting vaccines. The waning rate of NAb levels for the Omicron variant was much faster than that observed in the Alpha, Beta and Delta variants. To combat the Omicron variant, the fourth booster dose is, therefore, recommended for elderly individuals.

10.
Cells ; 12(6)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980189

RESUMEN

Cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) are components in the endocannabinoid system that play significant roles in regulating immune responses. There are many agonists for the cannabinoid receptors; however, their effects on T cell regulation have not been elucidated. In the present study, we determined the effects of the CB1 selective agonist ACEA and the CB2 selective agonist GW833972A on T cell responses. It was found that both agonists impaired anti-CD3 monoclonal antibody induced T cell proliferation. However, ACEA and GW833972A agonists down-regulated the expression of activation markers on CD4+ and CD8+ T cells and co-stimulatory molecules on B cells and monocytes in different manners. Moreover, only GW833972A suppressed the cytotoxic activities of CD8+ T cells without interfering in the cytotoxic activities of CD4+ T cells and NK cells. In addition, the CB2 agonist, but not CB1 agonist, caused the reduction of Th1 cytokine production. Our results demonstrated that the CB1 agonist ACEA and CB2 agonist GW833972A attenuated cell-mediated immunity in different mechanisms. These agonists may be able to be used as therapeutic agents for inducing T cell hypofunction in inflammatory and autoimmune diseases.


Asunto(s)
Linfocitos T CD8-positivos , Agonistas de Receptores de Cannabinoides , Agonistas de Receptores de Cannabinoides/farmacología , Inmunidad Celular , Receptores de Cannabinoides
11.
Artículo en Inglés | MEDLINE | ID: mdl-36773278

RESUMEN

BACKGROUND: The concept of heterologous vaccination against SARS-CoV-2 infection has been adopted in Thailand with limited data on the induction of humoral and cellular immunity, particularly the CoronaVac/ChAdOx-1 (CoVac/ChAd) regimen in the elderly. OBJECTIVE: In this study, the immune responses of the elderly induced by heterologous CoVac/ChAd and homologous ChAdOx-1 (ChAd/ChAd) vaccinations were demonstrated. METHODS: A prospective observational study involving healthy participants aged ≥ 60 years who received heterologous CoVac/ChAd or homologous ChAd/ChAd vaccination was conducted. Surrogate neutralizing antibody (NAb) and T-cell responses against the SARS-CoV-2 wild type (WT) and variants of concern were determined at pre and post vaccinations. RESULTS: At 4 and 12 weeks after heterologous or homologous vaccination, the NAb levels against WT, Alpha, Beta, and Delta variants between each group were not significantly different, except for significant lower NAb against the Beta variant in heterologous group at 12 weeks after vaccination. The NAb against the Omicron at 4 weeks post-vaccination were below the cutoff level for antibody detection in both groups. However, higher spike-specific CD4 T cell producing IFN-γ and TNF-α in the heterologous than the homologous vaccination were observed. Insignificant difference of cellular immune responses to spike-peptides of Alpha, Beta, and Delta variants and their WT homologues was demonstrated. CONCLUSIONS: In the elderly, heterologous CoVac/ChAd vaccination could induce NAb response against the WT and non-Omicron variants not different from the homologous ChAd/ChAd vaccination. Both regimens could not give adequate NAb of the Omicron strain. The heterologous vaccination, however, induced higher spike-specific Th1 cell response.

12.
Virus Res ; 323: 199015, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36455752

RESUMEN

Partial cleavage of a dengue virus envelope protein, prM, by furin results in a mixture of extracellular particles with variable levels of maturation and infectivity. Partially mature particles can infect leukocytes via interaction between the prM-anti-prM antibody complex with Fcγ receptors. Known prM epitopes involved in antibody-mediated infection are localized to the pr domain. In this study, a group of murine anti-prM monoclonal antibodies with strong infection-enhancing activity was found to reduce the focus size of subsets of multiple dengue serotypes that they could enhance. By employing sets of overlapping peptides, four antibodies recognizing 2-mercaptoethanol-insensitive epitopes were mapped to a common tetrapeptide located distantly in the b-c loop and furin binding site. Substitution mutations of each, or both, of the tetrapeptides in virus-like particles, however, failed to reduce binding. Further mapping experiments were performed using immature virus-like particles with abolished furin binding site to minimize the differential influence of various pr substitutions on pr-M cleavage. Reduction of antibody binding was detected when single alanine substitutions were introduced into the 'a' strand and 'c' strand of pr domain. These findings suggest that the pr 'a and c' strands region is the major binding site of these unusual focus size-reducing anti-prM antibodies.

13.
Explor Target Antitumor Ther ; 4(6): 1145-1156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38213540

RESUMEN

Aim: The present study aims to generate chimeric mouse single-chain variable fragment (scFv) and immunoglobulin G1 (IgG1) crystallizable fragment (Fc) antibody against disialoganglioside (GD2) for the treatment of neuroblastoma (NB). The generated scFv-IgG Fc antibody, lacking first constant domain of heavy chain (CH1), is of a smaller size than the natural antibody and has anti-tumor activity. Methods: Vector for scFv-IgG Fc antibody was constructed and scFv-IgG Fc antibody was expressed in human embryonic kidney 293T (HEK293T) cell line. Purification of scFv-IgG Fc antibody from the culture supernatant of transfected HEK293T cells was performed by Protein G affinity chromatography. The structure and binding activity of scFv-IgG Fc antibody were verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting (WB), and immunofluorescence techniques. Anti-tumor activities by antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) were determined. Results: Using plasmid fusion-human IgG1-Fc2 tag vector (pFUSE-hIgG1-Fc2), a plasmid vector encoding chimeric mouse scFv and hIgG1 Fc antibody against GD2 was successfully constructed. This vector was transfected into human HEK293T cells to produce scFv-IgG Fc antibody. The transfected HEK293T cells could produce chimeric scFv-IgG Fc antibody against GD2, which lacks the IgG heavy chain CH1 domain but carries CH2 and CH3 domains. The chimeric antibodies could be purified from the culture supernatant of the transfected HEK293T culture in the presence of zeocin drug. The produced GD2 scFv-IgG Fc antibodies, which are smaller in size than the intact antibody, could trigger the killing of GD2 expressed NB cell line SH-SY5Y by ADCC and ADCP mechanisms. Conclusions: The results indicate that chimeric scFv-hIgG Fc antibody, lacking heavy chain CH1 domain, could mediate antibody induced anti-tumor activities. The small size of this type of chimeric antibody may be employed as anti-GD2 antibody for NB therapy.

14.
Sci Rep ; 12(1): 21548, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513793

RESUMEN

The non-structural protein-1 (NS1) of dengue virus (DENV) contributes to several functions related to dengue disease pathogenesis as well as diagnostic applications. Antibodies against DENV NS1 can cross-react with other co-circulating flaviviruses, which may lead to incorrect diagnosis. Herein, five anti-DENV NS1 monoclonal antibodies (mAbs) were investigated. Four of them (1F11, 2E3, 1B2, and 4D2) cross-react with NS1 of all four DENV serotypes (pan-DENV mAbs), whereas the other (2E11) also reacts with NS1 of other flaviviruses (flavi-cross-reactive mAb). The binding epitopes recognized by these mAbs were found to overlap a region located on the disordered loop of the NS1 wing domain (amino acid residues 104 to 123). Fine epitope mapping employing phage display technology and alanine-substituted DENV2 NS1 mutants indicates the critical binding residues W115, K116, and K120 for the 2E11 mAb, which are conserved among flaviviruses. In contrast, the critical binding residues of four pan-DENV mAbs include both flavi-conserved residues (W115 to G119) and DENV-conserved flanking residues (K112, Y113, S114 and A121, K122). Our results highlight DENV-conserved residues in cross-reactive epitopes that distinguish pan-DENV antibodies from the flavi-cross-reactive antibody. These antibodies can be potentially applied to differential diagnosis of DENV from other flavivirus infections.


Asunto(s)
Virus del Dengue , Dengue , Flavivirus , Humanos , Anticuerpos Antivirales , Proteínas no Estructurales Virales/genética , Reacciones Cruzadas , Epítopos , Anticuerpos Monoclonales
15.
Vaccines (Basel) ; 10(12)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36560586

RESUMEN

Data on immunogenicity of adenovirus-vectored vaccine in chronic obstructive pulmonary disease (COPD) patients is limited. Therefore, we aimed to determine the humoral and cellular immune responses after homologous ChAdOx-1 vaccination in subjects with COPD. COPD subjects and age- and sex-matched healthy elderly receiving ChAdOx-1 homologous vaccination were included. The levels of neutralizing antibodies (NAb) and specific CD4 and CD8 T-cell responses against SARS-CoV-2 wild-type (WT) and variants of concern (VOCs: Alpha, Beta, Delta, and Omicron) were measured. Eight COPD patients were matched with eight control participants. After vaccination for 4 and 12 weeks, % inhibition of NAb against Alpha, Beta, and Delta in both groups were comparable and significantly higher than baseline. The percentage inhibition of NAb at the 12th week was significantly dropped from the 4th week in each group. The NAb against the Omicron variant, however, were much lower than Alpha, Beta, Delta variants. The increasing trend in the number of CD4 T-cells producing TNF-α, IFN-γ, IL-10, and FasL upon stimulation with spike peptides of WT and VOCs was observed in COPD patients compared to the healthy group. These responses were not observed in CD8 T-cells. Homologous ChAdOx-1 vaccination could induce comparable NAb against the SARS-CoV-2 WT, Alpha, Beta, Delta, and Omicron variants between COPD and healthy elderly. The CD4 T-cell responses did not differ between COPD patients and healthy control.

16.
Diagnostics (Basel) ; 12(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35741126

RESUMEN

Various vaccines have been developed to control the COVID-19 pandemic, but the available vaccines were developed using ancestral SARS-CoV-2 wild-type (WT) strains. Commercial anti-SARS-CoV-2 receptor binding domain (RBD) antibody assays have been established and employed for validation of vaccine efficacy. However, these assays were developed before the SARS-CoV-2 variants of concern (VOCs) emerged. It is unclear whether anti-RBD IgG levels can predict immunity against VOCs. In this study, we determined the correlations between the levels of anti-RBD IgG and neutralizing antibodies (NAbs) against SARS-CoV-2 variants in vaccinated subjects. After vaccination, 100% of subjects showed an anti-RBD IgG response, whereas 82, 79, 30, 75, and 2% showed NAb responses against WT, Alpha, Beta, Delta, and Omicron variants, respectively. A high correlation was observed between anti-RBD IgG and NAbs against WT, Alpha, Beta, and Delta, but not so for the Omicron NAbs. Among subjects with high levels of anti-RBD IgG, 93, 93, 71, 93, and 0% of them had NAbs against WT, Alpha, Beta, Delta, and Omicron variants, respectively. These results indicate that anti-RBD IgG levels cannot be used as a predictor for the presence of NAbs against the globally dominant SARS-CoV-2 Omicron variant.

17.
Immun Ageing ; 19(1): 24, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610643

RESUMEN

BACKGROUND: The existence of SARS-CoV-2 variants of concern (VOCs) in association with evidence of breakthrough infections despite vaccination resulted in the need for vaccine boosting. In elderly individuals, information on the immunogenicity of booster vaccinations is limited. In countries where the CoronaVac inactivated vaccine is the primary vaccine, the appropriate boosting regimen is not clear. Immunologic studies of the effects of booster vaccination against VOCs, particularly Delta and Omicron, following CoronaVac in elderly individuals are helpful for policy makers. In this study, we determined the immune responses against VOCs following ChAdOx-1 or BNT162b2 boosting in elderly individuals previously immunized with CoronaVac. RESULTS: Before boosting, the median % inhibition of neutralizing antibodies (NAbs) against the wild-type (WT), Alpha, Beta, Delta and Omicron variants in the ChAdOx-1 and BNT162b2 groups was 52.8% vs. 53.4, 36.6% vs. 39.9, 5.2% vs. 13.7, 34.3% vs. 44.9, and 20.8% vs. 18.8%, respectively. After boosting with ChAdOx-1 or BNT162b2, the % inhibition of NAbs were increased to 97.3% vs. 97.4, 94.3% vs. 97.3%, 79.9 vs. 93.7, 95.5% vs. 97.5, and 26.9% vs. 31.9% for WT, Alpha, Beta, Delta and Omicron variants, respectively. Boosting with BNT162b2 induced significantly higher NAb levels than boosting with ChAdOx-1 against the Alpha, Beta and Delta variants but not the WT and Omicron variants. NAb levels against Omicron variant were not significantly different before and after boosting with ChAdOx-1 or BNT162b2. To evaluate T-cell responses, S peptides of the WT, Alpha, Beta and Delta variants were used to stimulate T cells. Upon stimulation, the expression of IL-17A in CD8 T cells was higher in the BNT162b2 group than in the ChAdOx-1 boosting group. However, IFN-γ production in CD4 and CD8 T cells did not significantly differ under all vaccination regimens. The expression of FasL in CD4 T cells, but not CD8 T cells, was higher in the BNT162b2-boosted group. CONCLUSION: Boosting with either ChAdOx-1 or BNT162b2 in CoronaVac-primed healthy elderly individuals induced high NAb production against all examined VOCs except Omicron. BNT162b2 stimulated higher NAb and some T-cell responses than ChAdOx-1. Vaccine boosting is, therefore, recommended for elderly individuals previously immunized with CoronaVac.

18.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119295, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35598753

RESUMEN

CD147/Basigin/EMMPRIN is overexpressed in several cancerous tissues and it has been shown to induce matrix metalloproteinases (MMPs) whose expression is associated with cancer metastasis. Thus, targeting CD147 with monoclonal antibodies (mAbs) potentially has therapeutic applications in cancer immunotherapy. Here, we report the use of anti-CD147 mAbs targeting domain 1 of CD147, namely M6-1D4 (IgM), M6-1F3 (IgM), M6-2F9 (IgM) and M6-1E9 (IgG2a), against several human cancer cell lines. Strikingly, IgM but not IgG mAbs against CD147, especially clone M6-1D4, induced acute cellular swelling, and this phenomenon appeared to be specifically found with hepatocellular carcinoma (HCC) cells. Furthermore, molecular investigation upon treating HepG2 cells with M6-1D4 showed unfolded protein response (UPR) activation, autophagosome accumulation, and cell cycle arrest, but without classic apoptosis related features. More interestingly, prolonged M6-1D4 treatment (24 h) resulted in irreversible oncosis leading to necroptosis. Furthermore, treatment with a mixed lineage kinase domain-like psuedokinase (MLKL) inhibitor and partial knockout of MLKL resulted in reduced sensitivity to necroptosis in M6-1D4-treated HepG2 cells. Surprisingly however, the observed necroptotic signaling axis appeared to be non-canonical as it was independent of receptor-interacting serine/threonine-protein kinase (RIPK) phosphorylation. In addition, no cytotoxic effect on human dermal fibroblast (HDF) was observed after incubation with M6-1D4. Taken together, this study provides clues to target CD147 in HCC using mAbs, as well as sheds new light on a novel strategy to kill cancerous cells by the induction of necroptosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Basigina/genética , Basigina/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular , Humanos , Inmunoglobulina M/uso terapéutico , Neoplasias Hepáticas/metabolismo , Necroptosis
19.
Vaccine ; 40(21): 2915-2924, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35430106

RESUMEN

BACKGROUND: CoronaVac was administered as the primary COVID-19 vaccine for Thai health care workers (HCWs) in early 2021 in response to the epidemic of new variants. This study aimed to evaluate the dynamic of humoral immune response as well as the short-term side effects resulting from the booster dose of BNT162b2 following completion of a CoronaVac double-dose in Thai HCWs. METHODS: This study was conducted at a teaching hospital in Northern Thailand during August and September 2021. The participants were 50 HCWs who were vaccinated with 2 doses of CoronaVac and were scheduled to receive a booster dose of BNT162b2. Anti-SARS-CoV-2 IgG antibodies levels and short-term side effects were assessed. The anti-RBD level was determined using Architect SARS-CoV-2 IgG II Quant (Abbott). RESULT: Of the 50 participants, 37 were female. The median age was 33.0 years old. The average time between the second CoronaVac shot and the BNT162b2 booster shot was 81.7 days (SD = 25.0). The median anti-SARS-CoV-2 IgG antibody level on booster vaccination date, as well as day 14, and day 28 after the booster were 335.5 AU/ml, 31,613.5 AU/ml, and 20,311.9 AU/ml, respectively. Fourteen days after the booster, 94% of participants had anti-SARS-CoV-2 IgG antibody levels higher than 50.0 AU/ml. Being female, higher log anti-SARS-CoV-2 IgG antibodies prior to booster vaccination, and longer interval between the second shot and the booster shot were found to be significantly associated with higher levels of anti-SARS-CoV-2 IgG antibodies at both day 14 and day 28 after the booster. There were no reports of serious adverse events. CONCLUSION: A booster dose of BNT162B2 promoted a high level of anti-SARS-CoV-2 IgG antibodies among HCWs who received 2 doses of CoronaVac. The time between the second CoronaVac shot and the booster shot should be at least three months. There were no severe adverse effects observed.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Femenino , Personal de Salud , Humanos , Inmunoglobulina G , Masculino , SARS-CoV-2 , Tailandia
20.
Infect Drug Resist ; 15: 399-412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153492

RESUMEN

INTRODUCTION: Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) remains a global health concern because of the development of drug resistance. The adaptability of MTB in response to a variety of environmental stresses is a crucial strategy that supports their survival and evades host defense mechanisms. Stress regulates gene expression, particularly virulence genes, leading to the development of drug tolerance. Mannose-capped lipoarabinomannan (ManLAM) is a critical component of the cell wall, functions as a virulence factor and influences host defense mechanisms. PURPOSE: This study focuses on the effect of isoniazid (INH) stress on the regulation of ManLAM-related genes, to improve our understanding of virulence and drug resistance development in MTB. MATERIALS AND METHODS: MTB with distinct drug resistance profiles were used for gene expression analysis. Multiplex-real time PCR assay was performed to monitor stress-related genes (hspX, tgs1, and sigE). The expression levels of ManLAM-related genes (pimB, mptA, mptC, dprE1, dprE2, and embC) were quantified by qRT-PCR. Sequence analysis of drug resistance-associated genes (inhA, katG, and rpoB) and ManLAM-related genes were performed to establish a correlation between genetic variation and gene expression. RESULTS: INH treatment activates the stress response mechanism in MTB, resulting in a distinct gene expression pattern between drug resistance and drug-sensitive TB. In response to INH, hspX was up-regulated in RIF-R and MDR. tgs1 was strongly up-regulated in MDR, whereas sigE was dramatically up-regulated in the drug-sensitive TB. Interestingly, ManLAM-related genes were most up-regulated in drug resistance, notably MDR (pimB, mptA, dprE1, and embC), implying a role for drug resistance and adaptability of MTB via ManLAM modulation. CONCLUSION: This study establishes a relationship between the antibiotic stress response mechanism and the expression of ManLAM-related genes in MTB samples with diverse drug resistance profiles. The novel gene expression pattern in this work is valuable knowledge that can be applied for TB monitoring and treatment in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...