Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5636, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704626

RESUMEN

The virus life cycle depends on host-virus protein-protein interactions, which often involve a disordered protein region binding to a folded protein domain. Here, we used proteomic peptide phage display (ProP-PD) to identify peptides from the intrinsically disordered regions of the human proteome that bind to folded protein domains encoded by the SARS-CoV-2 genome. Eleven folded domains of SARS-CoV-2 proteins were found to bind 281 peptides from human proteins, and affinities of 31 interactions involving eight SARS-CoV-2 protein domains were determined (KD ∼ 7-300 µM). Key specificity residues of the peptides were established for six of the interactions. Two of the peptides, binding Nsp9 and Nsp16, respectively, inhibited viral replication. Our findings demonstrate how high-throughput peptide binding screens simultaneously identify potential host-virus interactions and peptides with antiviral properties. Furthermore, the high number of low-affinity interactions suggest that overexpression of viral proteins during infection may perturb multiple cellular pathways.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , Dominios Proteicos , SARS-CoV-2 , Ligandos , Proteómica , Péptidos/farmacología
2.
Nat Commun ; 14(1): 2409, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100772

RESUMEN

Viruses mimic host short linear motifs (SLiMs) to hijack and deregulate cellular functions. Studies of motif-mediated interactions therefore provide insight into virus-host dependencies, and reveal targets for therapeutic intervention. Here, we describe the pan-viral discovery of 1712 SLiM-based virus-host interactions using a phage peptidome tiling the intrinsically disordered protein regions of 229 RNA viruses. We find mimicry of host SLiMs to be a ubiquitous viral strategy, reveal novel host proteins hijacked by viruses, and identify cellular pathways frequently deregulated by viral motif mimicry. Using structural and biophysical analyses, we show that viral mimicry-based interactions have similar binding strength and bound conformations as endogenous interactions. Finally, we establish polyadenylate-binding protein 1 as a potential target for broad-spectrum antiviral agent development. Our platform enables rapid discovery of mechanisms of viral interference and the identification of potential therapeutic targets which can aid in combating future epidemics and pandemics.


Asunto(s)
Bacteriófagos , Proteínas Intrínsecamente Desordenadas , Virus , Bacteriófagos/genética , Virus/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Secuencias de Aminoácidos , Interacciones Huésped-Patógeno/genética
3.
Anal Biochem ; 663: 115017, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36526023

RESUMEN

Low affinity and transient protein-protein interactions, such as short linear motif (SLiM)-based interactions, require dedicated experimental tools for discovery and validation. Here, we evaluated and compared biotinylated peptide pulldown and protein interaction screen on peptide matrix (PRISMA) coupled to mass-spectrometry (MS) using a set of peptides containing interaction motifs. Eight different peptide sequences that engage in interactions with three distinct protein domains (KEAP1 Kelch, MDM2 SWIB, and TSG101 UEV) with a wide range of affinities were tested. We found that peptide pulldown can be an effective approach for SLiM validation, however, parameters such as protein abundance and competitive interactions can prevent the capture of known interactors. The use of tandem peptide repeats improved the capture and preservation of some interactions. When testing PRISMA, it failed to provide comparable results for model peptides that successfully pulled down known interactors using biotinylated peptide pulldown. Overall, in our hands, we find that albeit more laborious, biotin-peptide pulldown was more successful in terms of validation of known interactions. Our results highlight that the tested affinity-capture MS-based methods for validation of SLiM-based interactions from cell lysates are suboptimal, and we identified parameters for consideration for method development.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Péptidos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Péptidos/química , Espectrometría de Masas/métodos , Cromatografía de Afinidad
4.
Sci Rep ; 11(1): 7595, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828141

RESUMEN

Samples in biobanks are generally preserved by formalin-fixation and paraffin-embedding (FFPE) and/or optimal cutting temperature compound (OCT)-embedding and subsequently frozen. Mass spectrometry (MS)-based analysis of these samples is now available via developed protocols, however, the differences in results with respect to preservation methods needs further investigation. Here we use bladder urothelial carcinoma tissue of two different tumor stages (Ta/T1-non-muscle invasive bladder cancer (NMIBC), and T2/T3-muscle invasive bladder cancer (MIBC)) which, upon sampling, were divided and preserved by FFPE and OCT. Samples were parallel processed from the two methods and proteins were analyzed with label-free quantitative MS. Over 700 and 1200 proteins were quantified in FFPE and OCT samples, respectively. Multivariate analysis indicates that the preservation method is the main source of variation, but also tumors of different stages could be differentiated. Proteins involved in mitochondrial function were overrepresented in OCT data but missing in the FFPE data, indicating that these proteins are not well preserved by FFPE. Concordant results for proteins such as HMGCS2 (uniquely quantified in Ta/T1 tumors), and LGALS1, ANXA5 and plastin (upregulated in T2/T3 tumors) were observed in both FFPE and OCT data, which supports the use of MS technology for biobank samples and encourages the further evaluation of these proteins as biomarkers.


Asunto(s)
Adhesión en Parafina/métodos , Manejo de Especímenes/métodos , Fijación del Tejido/métodos , Biomarcadores de Tumor/genética , Cromatografía Liquida/métodos , Fijadores/química , Formaldehído/química , Humanos , Proteínas/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Conservación de Tejido/métodos , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...