Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 56, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491381

RESUMEN

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Asunto(s)
Anhidrasas Carbónicas , Carcinoma de Células Renales , Neoplasias Renales , Receptores Quiméricos de Antígenos , Animales , Ratones , Humanos , Anhidrasa Carbónica IX/genética , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/patología , Receptores Quiméricos de Antígenos/genética , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/uso terapéutico , Antígenos de Neoplasias , Anticuerpos , Linfocitos T/metabolismo
2.
iScience ; 27(2): 108879, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327771

RESUMEN

One of the major barriers that have restricted successful use of chimeric antigen receptor (CAR) T cells in the treatment of solid tumors is an unfavorable tumor microenvironment (TME). We engineered CAR-T cells targeting carbonic anhydrase IX (CAIX) to secrete anti-PD-L1 monoclonal antibody (mAb), termed immune-restoring (IR) CAR G36-PDL1. We tested CAR-T cells in a humanized clear cell renal cell carcinoma (ccRCC) orthotopic mouse model with reconstituted human leukocyte antigen (HLA) partially matched human leukocytes derived from fetal CD34+ hematopoietic stem cells (HSCs) and bearing human ccRCC skrc-59 cells under the kidney capsule. G36-PDL1 CAR-T cells, haploidentical to the tumor cells, had a potent antitumor effect compared to those without immune-restoring effect. Analysis of the TME revealed that G36-PDL1 CAR-T cells restored active antitumor immunity by promoting tumor-killing cytotoxicity, reducing immunosuppressive cell components such as M2 macrophages and exhausted CD8+ T cells, and enhancing T follicular helper (Tfh)-B cell crosstalk.

3.
Mol Cancer ; 23(1): 8, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195534

RESUMEN

Treatment for renal cell carcinoma (RCC) has improved dramatically over the last decade, shifting from high-dose cytokine therapy in combination with surgical resection of tumors to targeted therapy, immunotherapy, and combination therapies. However, curative treatment, particularly for advanced-stage disease, remains rare. Cell therapy as a "living drug" has achieved hematological malignancy cures with a high response rate, and significant research efforts have been made to facilitate its translation to solid tumors. Herein, we overview the cellular therapies for RCC focusing on allogeneic hematopoietic stem cell transplantation, T cell receptor gene-modified T cells, chimeric antigen receptor (CAR) T cells, CAR natural killer (NK) cells, lymphokine-activated killer (LAK) cells, γδ T cells, and dendritic cell vaccination. We have also included perspectives for using other recent approaches, such as CAR macrophages, dendritic cell-cytokine induced killer cells and regulatory CAR-T cells to shed light on preclinical development of cell therapy and advancing cell therapy into clinic to achieve cures for RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/terapia , Inmunoterapia , Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Combinada , Neoplasias Renales/terapia
4.
EBioMedicine ; 80: 104025, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35533497

RESUMEN

BACKGROUND: Evolutionary pressure has led to the emergence of SARS-CoV-2 variants, with the most recent Omicron variant containing an unparalleled 30 mutations in the spike protein. Many of these mutations are expected to increase immune evasion, thus making breakthrough cases and re-infection more common. METHODS: From June 2020 to December 2021 serial blood samples (initial post recovery, 6 months, 12 months) were collected from a COVID-19 convalescent cohort in Boston, MA. Plasma was isolated for use in Mesoscale Discovery based antibody binding assays. Unvaccinated donors or those vaccinated prior to the primary blood draw were excluded from this analysis, as were those who did not have at least two blood draws. Wilcoxon signed rank tests were used to compare pre- and post-vaccination titers and antibody response against different variants, while McNemar tests were used to compare the proportions of achieving ≥ 4 fold increases against different variants. FINDINGS: Forty-eight COVID convalescent donors with post-infection vaccination (hybrid immunity) were studied to evaluate the levels of cross-reactive antibodies pre- and post- vaccination against various SARS-CoV-2 Spike and receptor binding domain (RBD) proteins. Vaccination with BNT162b2, mRNA-1273 or Ad26.COV2.S led to a 6·3 to 7·8 fold increase in anti-Spike antibody titers and a 7·0 to 7·4 fold increase in anti-WT, Alpha and Delta RBD antibody. However, a lower response was observed for Beta and Omicron RBDs with only 7/48 (15%) and 15/48 (31%) donors having a ≥4 fold increase in post-vaccination titers against Beta and Omicron RBDs. Structural analysis of the Beta and Omicron RBDs reveal a shared immune escape strategy involving residues K417-E484-N501 that is exploited by these variants of concern. INTERPRETATION: Through mutations of the K417-E484-N501 triad, SARS-CoV-2 has evolved to evade neutralization by the class I/II anti-RBD antibody fraction of hybrid immunity plasma as the polyclonal antibody response post-vaccination shows limitations in the ability to solve the structural requirements to bind the mutant RBDs. FUNDING: Massachusetts Consortium on Pathogen Readiness (280870.5116709.0016) and the National Institute of Allergy and Infectious Diseases (1R01AI161152-01A1).


Asunto(s)
COVID-19 , Vacunas Virales , Ad26COVS1 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , Humanos , Pruebas de Neutralización , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
5.
Immuno-oncol Insights ; 3(8): 379-398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37132013

RESUMEN

Immunotherapy has demonstrated great success in clinical treatment, especially for cancer care. Here we review preclinical models, including cell lines, three dimensional (3D) cultures, and mouse models to support the need for tools enabling the development of novel immune-oncology (I-O) therapies. While in vitro studies have the advantage of being relatively simpler, faster, and higher throughput than in vivo models, they must be designed carefully to recapitulate the biological conditions that influence drug efficacy. The growing prevalence of 3D in vitro and ex vivo models has enabled screening and mechanistic studies in more complex, tissue-like environments containing multiple interacting cell types. On the other hand, syngeneic mouse models have been instrumental in the historical development of immunotherapies and remain an important tool in drug development, despite lacking fidelity to certain aspects of human physiology and pathology. Xenograft and humanized mouse models address some of these challenges, yet present limitations of their own. Successful development and translation of new I-O therapies will likely require thoughtful combination of several of these preclinical models, and we aim to help research and development scientists utilize the appropriate tools and technologies to facilitate rapid transition from preclinical evaluation to clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...