Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Lipid Res ; 64(11): 100458, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37838304

RESUMEN

Although pregnant women's fish consumption is beneficial for the brain development of the fetus due to the DHA in fish, seafood also contains methylmercury (MeHg), which adversely affects fetal brain development. Epidemiological studies suggest that high DHA levels in pregnant women's sera may protect the fetal brain from MeHg-induced neurotoxicity, but the underlying mechanism is unknown. Our earlier study revealed that DHA and its metabolite 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) produced by cytochrome P450s (P450s) and soluble epoxide hydrolase (sEH) can suppress MeHg-induced cytotoxicity in mouse primary neuronal cells. In the present study, DHA supplementation to pregnant mice suppressed MeHg-induced impairments of pups' body weight, grip strength, motor function, and short-term memory. DHA supplementation also suppressed MeHg-induced oxidative stress and the decrease in the number of subplate neurons in the cerebral cortex of the pups. DHA supplementation to dams significantly increased the DHA metabolites 19,20-epoxydocosapentaenoic acid (19,20-EDP) and 19,20-DHDP as well as DHA itself in the fetal and infant brains, although the expression levels of P450s and sEH were low in the fetal brain and liver. DHA metabolites were detected in the mouse breast milk and in human umbilical cord blood, indicating the active transfer of DHA metabolites from dams to pups. These results demonstrate that DHA supplementation increased DHA and its metabolites in the mouse pup brain and alleviated the effects of MeHg on fetal brain development. Pregnant women's intake of fish containing high levels of DHA (or DHA supplementation) may help prevent MeHg-induced neurotoxicity in the fetus.


Asunto(s)
Compuestos de Metilmercurio , Lactante , Animales , Humanos , Embarazo , Femenino , Ratones , Compuestos de Metilmercurio/toxicidad , Ácidos Docosahexaenoicos/farmacología , Encéfalo , Estrés Oxidativo , Feto
2.
Toxicol Appl Pharmacol ; 430: 115714, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543669

RESUMEN

Silver nanomaterials such as silver nanocolloids (SNC) contribute to environmental pollution and have adverse ecological effects on aquatic organisms. In particular, chemical exposure of fish during embryogenesis leads to deformities and puts the population at risk. Although glycans and glycosylation are known to be important for proper morphology in embryogenesis, little glycobiology-based research has examined morphological disorders caused by environmental pollutants. This study addressed the glycobiological effects of SNC exposure on medaka embryogenesis. After exposure of medaka embryos to SNC, deformities such as small heads and deformed eyes were observed. The expression of five glycan-related genes (alg2, gnsb, b4galt2, b3gat1a, and b3gat2) was significantly altered, with changes depending on the embryonic stage at exposure, with more severe deformities with exposure at earlier stages. In situ hybridization analyses indicated that the five genes were expressed mainly in the head region; exposure of SNC suppressed alg2 and gnsb and enhanced b4galt2 and b3gat1a expression relative to controls on day 7. Loss (siRNA)- and gain (RNA overexpression)-of-function experiments confirmed that alg2, gnsb, and b4galt2 are essential for embryogenesis. The effects of SNC exposure on glycan synthesis were estimated by glycan structure analysis. In the medaka embryo, high mannose-type glycans were dominant, and SNC exposure altered glycan synthesis. The alteration was more significant when exposure occurred at an early stage of medaka embryogenesis. Thus, SNC exposure causes embryonic deformities in medaka embryos through disordered glycosylation.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Proteínas de Peces/metabolismo , Nanopartículas del Metal/toxicidad , Oryzias , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Plata/toxicidad , Animales , Embrión no Mamífero/anomalías , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glicosilación , Oryzias/embriología , Oryzias/genética , Oryzias/metabolismo
3.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361068

RESUMEN

The immunotoxic effects of some anthropogenic pollutants on aquatic organisms are among the causes of concern over the presence of these pollutants in the marine environment. The immune system is part of an organism's biological defense necessarily for homeostasis. Thus, the immunotoxicological impacts on aquatic organisms are important to understand the effects of pollutant chemicals in the aquatic ecosystem. When aquatic organisms are exposed to pollutant chemicals with immunotoxicity, it results in poor health. In addition, aquatic organisms are exposed to pathogenic bacteria, viruses, parasites, and fungi. Exposure to pollutant chemicals has reportedly caused aquatic organisms to show various immunotoxic symptoms such as histological changes of lymphoid tissue, changes of immune functionality and the distribution of immune cells, and changes in the resistance of organisms to infection by pathogens. Alterations of immune systems by contaminants can therefore lead to the deaths of individual organisms, increase the general risk of infections by pathogens, and probably decrease the populations of some species. This review introduced the immunotoxicological impact of pollutant chemicals in aquatic organisms, including invertebrates, fish, amphibians, and marine mammals; described typical biomarkers used in aquatic immunotoxicological studies; and then, discussed the current issues on ecological risk assessment and how to address ecological risk assessment through immunotoxicology. Moreover, the usefulness of the population growth rate to estimate the immunotoxicological impact of pollution chemicals was proposed.


Asunto(s)
Organismos Acuáticos/inmunología , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos
4.
Arch Environ Contam Toxicol ; 81(1): 36-45, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33893852

RESUMEN

To clarify whether microplastics contribute to elevated bioaccumulation of methylmercury (MeHg) in aquatic organisms, we studied the sorption pattern of MeHg on polystyrene beads (PBs) and evaluated MeHg accumulation, via uptake of MeHg-adsorbed PB, in the oyster Crassostrea gigas. MeHg-cysteine conjugates were added to seawater at 10, 100, and 1000 µg/L as Hg. Polystyrene beads (φ = 0.02, 0.2, and 2 µm) were immersed in the seawater for 24 h. The concentrations of total mercury (T-Hg) adsorbed onto the PBs were then measured using the reduction vaporization method. T-Hg concentrations for the PBs with diameters of 0.02, 0.2, and 2 µm were 10.6 ± 0.4, 1.8 ± 0.1, and 1.3 ± 0.1 ng/mg-PBs, respectively, when immersed in 2 mL of MeHg-added seawater (100 µg/L as Hg). Thus, the adsorption efficiency of MeHg onto PBs was higher in the presence of smaller diameter PBs. Next, 1 mg of PBs immersed in 2 mL of seawater containing 100 µg/L of MeHg for 24 h was added to an oyster tank containing 1 L of seawater. The T-Hg concentration of the oysters was measured after 6 h of exposure. No significant difference was found in the T-Hg concentration of oysters in the presence of PBs (0.30 ± 0.01 to 0.37 ± 0.05 ng/mg as dry weight) with MeHg and in the absence of PBs (0.36 ± 0.03 ng/mg as dry weight). Our results suggest that the presence of PBs in seawater has little effect on MeHg uptake by oysters.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Mercurio/análisis , Plásticos , Poliestirenos , Agua de Mar , Contaminantes Químicos del Agua/análisis
5.
Environ Toxicol ; 36(3): 417-424, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33098621

RESUMEN

Angiogenesis is essential for the normal development of an embryo. Silver nanocolloid (SNC) is known to induce vascular malformation in the medaka embryo. We focused on the development of the central arteries (CtAs) in the hindbrain of Japanese medaka. The CtAs and the basilar artery from which they branch are essential for transporting the blood and nutrients necessary to support the hindbrain parenchyma and the development of the pons and cerebellum from the hindbrain. We exposed medaka embryos at developmental stage 21 (6 somite stage), to 0, 0.5, 5, or 10 mg/L SNC and evaluated hatching rate, number of thrombi per embryo, head size (length and width), body length, and angiogenesis. Although all SNC-exposed embryos hatched, their head size and body length were small in comparison to controls; in addition, the number of thrombi in the head increased and head size and body length decreased as the SNC concentration increased. To evaluate vasculogenic abnormalities, we performed whole-mount in situ hybridization using a vascular marker (eg, fl7) and visualized the CtAs in medaka embryos. In control embryos, CtAs started to sprout at stage 32 (somite completion stage) and their extension was complete by stage 35 (pectoral fin blood circulation stage). In contrast, CtAs failed to sprout in SNC-exposed embryos, and thrombi were present. Furthermore, qRT-PCR analysis showed that SNC significantly suppressed the egfl7 expression level at stage 35. Together, our findings suggest that SNC induced decreased developments of head and body in medaka embryos due to insufficient angiogenesis and hindbrain vascular formation.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Oryzias/embriología , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Hibridación in Situ , Neurogénesis , Oryzias/crecimiento & desarrollo , Rombencéfalo/metabolismo
6.
Environ Pollut ; 254(Pt B): 113092, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31472453

RESUMEN

Because of its analgesic properties, acetaminophen (AAP) is widely used to relieve headache. AAP is generally considered safe for humans, but its effects on aquatic organisms are not well known. Here, we have hypothesis that effects of AAP on aquatic organisms would be environmental temperature dependent, because their physiological function depend on the temperature. To test this hypothesis, we used medaka (Oryzias latipes) as a model, because they can live at a wide range of temperatures (0-40 °C). We exposed medaka larvae to 0 (control), 50, or 150 mg/L of AAP at 15, 25 (optimal temperature), or 30 °C for 4 days. Egg yolk absorption was accelerated with raising temperature at any AAP dose. AAP exposure did not have biologically significant effects on survival ratio and body length of larvae at any tested temperature or dose, but heart rate decreased as the dose of AAP and environmental temperature increased. In addition, as the temperature increased, amount of ATP in individual larvae increased in control group, but decreased in AAP exposed group. Subsequently, exposure to 150 mg/L of AAP at 30 °C decreased the number of red blood cells in the gills; we used 150 mg/L of AAP in subsequent hematological and histological analyses. Hematological analysis showed that rising temperature increased the proportion of morphologically abnormal red blood cells in AAP-exposed larvae, suggesting that AAP induced anemia-like signs in larvae. Histological observation of the kidney, which is a hematopoietic organ in fish, revealed no abnormalities. However, in the liver, which is responsible for drug metabolism, the proportion of vacuoles increased with increasing temperature. Although the exposure concentration we tested was higher than environmentally relevant concentrations, our data indicated that rising temperature enhances the toxicity of AAP to medaka larvae, suggesting an ecological risk of AAP due to global warming.


Asunto(s)
Acetaminofén/toxicidad , Larva/efectos de los fármacos , Temperatura , Contaminantes Químicos del Agua/toxicidad , Acetaminofén/química , Animales , Calentamiento Global , Oryzias/fisiología , Pruebas de Toxicidad , Contaminantes Químicos del Agua/química
7.
Environ Toxicol Pharmacol ; 58: 98-104, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29306823

RESUMEN

The present study was undertaken to assess the effects of the endocrine-disrupting compound; 4-nonylphenol (4-NP) in medaka (Oryzias latipes). The frequencies of erythrocyte alterations, apoptosis, and micronuclei were used as biological indicators of damage. Medaka were exposed 15 days to 4-NP at three sublethal concentrations (50, 80, and 100 µg/l 4-NP) and results compared with those of a previous study using catfish as an animal model. Exposure of medaka resulted in a dose-dependent increase in the frequency of erythrocyte alterations, apoptosis and micronucleus (MN). Many morphological alterations and nuclear abnormalities were observed, including acanthocytes, lobed nucleus, eccentric nucleus, fragmented nucleus, blebbed nucleus, binuclei, deformed nucleus, notched nucleus, hemolysed cells, crenated cells, teardrop-like cells, and schistocytes. Mortality was recorded after treatment with 80 and 100 µg/l 4-NP, indicating that medaka are more sensitive than catfish to 4-NP exposure. We concluded that, 4-NP causes several malformations in the shape and number of erythrocytes in medaka, indicating its genotoxicity.


Asunto(s)
Disruptores Endocrinos/toxicidad , Eritrocitos/efectos de los fármacos , Oryzias/sangre , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Apoptosis/efectos de los fármacos , Recuento de Células Sanguíneas , Eritrocitos/patología , Eritrocitos Anormales , Femenino , Micronúcleos con Defecto Cromosómico
8.
Environ Pollut ; 233: 1155-1163, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29037497

RESUMEN

Fish embryo toxicology is important because embryos are more susceptible than adults to toxicants. In addition, the aquatic toxicity of chemicals depends on water quality. We examined the toxicities to medaka embryos of three types of silver-AgNO3, silver nanocolloids (SNCs), and silver ions from silver nanoparticle plates (SNPPs)-under three pH conditions (4.0, 7.0, and 9.0) in embryo-rearing medium (ERM) or ultrapure water. Furthermore, we tested the later-life-stage effects of SNCs on medaka and their population growth. "Later-life-stage effects" were defined here as delayed toxic effects that occurred during the adult stage of organisms that had been exposed to toxicant during their early life stage only. AgNO3, SNCs, and silver ions were less toxic in ERM than in ultrapure water. Release of silver ions from the SNPPs was pH dependent: in ERM, silver toxicity was decreased owing to the formation of silver chloro-complexes. SNC toxicity was higher at pH 4.0 than at 7.0 or 9.0. AgNO3 was more toxic than SNCs. To observe later-life effects of SNCs, larvae hatched from embryos exposed to 0.01 mg/L SNCs in ultrapure water were incubated to maturity under clean conditions. The mature medaka were then allowed to reproduce for 21 days. Calculations using survival ratios and reproduction data indicated that the intrinsic population growth rate decreased after exposure of embryos to SNC. SNC exposure reduced the extinction time as a function of the medaka population-carrying capacity.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Nitrato de Plata/toxicidad , Plata/toxicidad , Animales , Colorantes , Larva/efectos de los fármacos , Oryzias/embriología , Oryzias/crecimiento & desarrollo , Crecimiento Demográfico , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad
9.
J Appl Toxicol ; 37(4): 408-416, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27534384

RESUMEN

To investigate the effects of salinity on the behavior and toxicity of functionalized single-walled carbon nanotubes (SWCNTs), which are chemical modified nanotube to increase dispersibility, medaka embryos were exposed to non-functionalized single-walled carbon nanotubes (N-SWCNTs), water-dispersible, cationic, plastic-polymer-coated, single-walled carbon nanotubes (W-SWCNTs), or hydrophobic polyethylene glycol-functionalized, single-walled carbon nanotubes (PEG-SWCNTs) at different salinities, from freshwater to seawater. As reference nanomaterials, we tested dispersible chitin nanofiber (CNF), chitosan-chitin nanofiber (CCNF) and chitin nanocrystal (CNC, i.e. shortened CNF). Under freshwater conditions, with exposure to 10 mg l-1 W-SWCNTs, the yolk sacks of 57.8% of embryos shrank, and the remaining embryos had a reduced heart rate, eye diameter and hatching rate. Larvae had severe defects of the spinal cord, membranous fin and tail formation. These toxic effects increased with increasing salinity. Survival rates declined with increasing salinity and reached 0.0% in seawater. In scanning electron microscope images, W-SWCNTs, CNF, CCNF and CNC were adsorbed densely over the egg chorion surface; however, because of chitin's biologically harmless properties, only W-SWCNTs had toxic effects on the medaka eggs. No toxicity was observed from N-SWCNT and PEG-SWCNT exposure. We demonstrated that water dispersibility, surface chemistry, biomedical properties and salinity were important factors in assessing the aquatic toxicity of nanomaterials. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Embrión no Mamífero/patología , Nanotubos de Carbono/toxicidad , Oryzias/fisiología , Salinidad , Anomalías Inducidas por Medicamentos/patología , Animales , Quitina/química , Corion/química , Corion/patología , Desarrollo Embrionario/efectos de los fármacos , Agua Dulce/química , Larva , Nanotubos de Carbono/química , Agua de Mar/química , Saco Vitelino/patología
10.
J Vis Exp ; (109)2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-27023020

RESUMEN

Salinity is an important characteristic of the aquatic environment. For aquatic organisms it defines the habitats of freshwater, brackish water, and seawater. Tests of the toxicity of chemicals and assessments of their ecological risks to aquatic organisms are frequently performed in freshwater, but the toxicity of chemicals to aquatic organisms depends on pH, temperature, and salinity. There is no method, however, for testing the salinity dependence of toxicity to aquatic organisms. Here, we used medaka (Oryzias latipes) because they can adapt to freshwater, brackish water, and seawater. Different concentrations of embryo-rearing medium (ERM) (1x, 5x, 10x, 15x, 20x, and 30x) were employed to test the toxicity of silver nanocolloidal particles (SNCs) to medaka eggs (1x ERM and 30x ERM have osmotic pressures equivalent to freshwater and seawater, respectively). In six-well plastic plates, 15 medaka eggs in triplicate were exposed to SNCs at 10 mg/L(-1) in different concentrations of ERM at pH 7 and 25 °C in the dark. We used a dissecting microscope and a micrometer to measure heart rate per 15 sec and eye diameter on day 6 and full body length of the larvae on hatching day (section 4). The embryos were observed until hatching or day 14; we then counted the hatching rate every day for 14 days (section 4). To see silver accumulation in embryos, we used inductively coupled plasma mass spectrometry to measure the silver concentration of test solutions (section 5) and dechorionated embryos (section 6).The toxicity of the SNCs to medaka embryos obviously increased with increasing salinity. This new method allows us to test the toxicity of chemicals in different salinities.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Oryzias/embriología , Salinidad , Plata/toxicidad , Pruebas de Toxicidad Aguda , Animales , Ecosistema , Larva , Agua de Mar
11.
Arch Environ Contam Toxicol ; 68(3): 500-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25352442

RESUMEN

We investigated the interspecific variation of silver nanoparticle (SNP) sensitivity in common cladocerans (Daphnia magna, D. galeata, and Bosmina longirostris) and the exact cause of both acute and chronic toxicity focusing on the form of silver (NPs and ions). Materials tested were non-surface-coated silver nanocolloids (SNCs) and AgNO3. The results of the acute toxicity tests support the theory that the effects of SNPs on aquatic organisms is mainly due to Ag(+) released from SNPs. Among the three cladocerans, D. galeata was more sensitive to silver (as Ag(+)) than both D. magna and B. longirostris. Moreover, the chronic toxicity of SNCs was also derived from dissolved silver (especially Ag(+)). SNCs (as total silver concentration) showed far lower chronic compared with acute toxicity to daphnids because the amount of dissolved silver decreased in the presence of prey algae. The chronic end-point values (EC10 values for net reproductive rate and the probability of survival to maturation) did not differ largely from acute ones (48-h EC50 obtained from acute toxicity tests and 48-h LC50 estimated by the biotic ligand model) when the values were calculated based on Ag(+) concentration. The α value (concentration at which intrinsic population growth rate is decreased to zero) estimated by a power function model was a reliable parameter for assessing the chronic toxicity of silver.


Asunto(s)
Cladóceros/efectos de los fármacos , Nanopartículas/toxicidad , Plata/toxicidad , Pruebas de Toxicidad , Animales
12.
Mar Environ Res ; 99: 198-203, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25047545

RESUMEN

In this study, the effects of silver nanocolloids (SNCs) on the early life stages of the reef-building coral Acropora japonica were investigated. The tolerance of this species to SNC contamination was estimated by exposing gametes, larvae, and primary polyps to a range of SNC concentrations (0, 0.5, 5, 50, and 500 µg l(-1)). Pure SNCs were immediately ionized to Ag(+) in seawater and concentrations of ≥50 µg l(-1) SNC had a significant detrimental effect on fertilization, larval metamorphosis, and primary polyp growth. Exposure to 50 µg l(-1) SNC did not significantly affect larval survival; however, the larvae were deformed and lost their ability to metamorphose. At the highest concentration (500 µg l(-1) SNC), all gametes, larvae, and primary polyps died. These experiments provide the first data on the effects of silver-nanomaterial-contaminated seawater on cnidarians, and suggest that silver nanomaterials can influence the early development of corals through anthropogenic wastewater inputs.


Asunto(s)
Antozoos/efectos de los fármacos , Antozoos/crecimiento & desarrollo , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Análisis de Varianza , Animales , Relación Dosis-Respuesta a Droga , Fertilización/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Japón , Larva/efectos de los fármacos , Metamorfosis Biológica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...