Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Methods Mol Biol ; 2698: 195-220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682477

RESUMEN

Many methods are now available to identify or predict the target genes of transcription factors (TFs) in plants. These include experimental approaches such as in vivo or in vitro TF-target gene-binding assays and various methods for identifying regulated targets in mutants, transgenics, or isolated plant cells. In addition, computational approaches are used to infer TF-target gene interactions from the regulatory elements or gene expression changes across treatments. While each of these approaches has now been applied to a large number of TFs from many species, each method has its own limitations which necessitates that multiple data types are integrated to build the most accurate representation of the gene regulatory networks operating in plants. To make the analyses of TF-target interaction datasets available to the broader research community, we have developed the ConnecTF web platform ( https://connectf.org/ ). In this chapter, we describe how ConnecTF can be used to integrate validated and predicted TF-target gene interactions in order to dissect the regulatory role of TFs in developmental and stress response pathways. Using as our examples KN1 and RA1, two well-characterized maize TFs involved in developing floral tissue, we demonstrate how ConnecTF can be used to (1) compare the target genes between TFs, (2) identify direct vs. indirect targets by combining TF-binding and TF-regulation datasets, (3) chart and visualize network paths between TFs and their downstream targets, and (4) prune inferred user networks for high-confidence predicted interactions using validated TF-target gene data. Finally, we provide instructions for setting up a private version of ConnecTF that enables research groups to store and analyze their own TF-target gene interaction datasets.


Asunto(s)
Redes Reguladoras de Genes , Células Vegetales , Proyectos de Investigación
2.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662366

RESUMEN

We present the genome of the living fossil, Wollemia nobilis, a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons. Reduced representation and genome re-sequencing of individuals confirms a relictual population since the last major glacial/drying period in Australia, 120 ky BP. Small RNA and methylome sequencing reveal conservation of ancient silencing mechanisms despite the presence of thousands of active and abundant transposons, including some transferred horizontally to conifers from arthropods in the Jurassic. A retrotransposon burst 8-6 my BP coincided with population decline, possibly as an adaptation enhancing epigenetic diversity. Wollemia, like other conifers, is susceptible to Phytophthora, and a suite of defense genes, similar to those in loblolly pine, are targeted for silencing by sRNAs in leaves. The genome provides insight into the earliest seed plants, while enabling conservation efforts.

3.
Front Oncol ; 12: 976837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106113

RESUMEN

Introduction: Approximately 40% of patients with uveal melanoma (UM) will develop metastatic disease. Tumors measuring at least 12mm in basal diameter with a class 2 signature, as defined by a widely used gene expression-profiling test, are associated with significantly higher risk of metastasis, with a median time to recurrence of 32 months. No therapy has been shown to reduce this risk. Materials and Methods: This was a single-arm, multicenter study in patients with high-risk UM who received definitive treatment of primary disease and had no evidence of metastasis. Patients were consecutively enrolled to receive 12 four-week cycles of adjuvant crizotinib at a starting dose of 250mg twice daily and were subsequently monitored for 36 months. The primary outcome of this study was to assess recurrence-free survival (RFS) of patients with high-risk UM who received adjuvant crizotinib. Results: 34 patients enrolled and received at least one dose of crizotinib. Two patients were unevaluable due to early withdrawal and loss to follow-up, leaving 32 patients evaluable for efficacy. Eight patients (25%) did not complete the planned 48-week course of treatment due to disease recurrence (n=5) or toxicity (n=3). All patients experienced at least one adverse event (AE), with 11/34 (32%) experiencing a Common Terminology Criteria for Adverse Events (CTCAE) grade 3 or 4 AE. After a median duration of follow up of 47.1 months, 21 patients developed distant recurrent disease. The median RFS was 34.9 months (95% CI (Confidence Interval), 23-55 months), with a 32-month recurrence rate of 50% (95% CI, 33-67%). Analysis of protein contents from peripheral blood extracellular vesicles in a subset of patient samples from baseline, on-treatment, and off-treatment, revealed a change in protein content associated with crizotinib exposure, however without a clear association with disease outcome. Conclusions: The use of adjuvant crizotinib in patients with high-risk UM did not result in improved RFS when compared to historical controls. Analysis of blood extracellular vesicles revealed changes in protein content associated with treatment, raising the possibility of future use as a biomarker. Further investigation of adjuvant treatment options are necessary for this challenging disease.

4.
Methods Mol Biol ; 2546: 401-409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36127607

RESUMEN

Utilizing biofluids to identify cancer biomarkers has received considerable attention in the past decade. In this regard, serum and urine are convenient biofluids to noninvasively recapitulate information usually indicated by traditional tissue biopsies. In particular, we are interested in exploring the extracellular vesicle (ECV)-containing compartment of these fluids as a targeted source for cancer biomarker discovery. ECVs are membrane-enclosed particles, comprising of various fractions including exosomes, microvesicles, and apoptotic bodies. In both physiological and pathological states such as cancer, ECVs carry a rich load of molecular and protein cargoes, which aid in mediating intercellular communication between cells from various tissue types. Here we successfully enriched ECVs using a simple, low-cost, optimized method that we have developed; it is generalizable for the analysis of ECVs from multiple sample types. Such procedures are necessary as ECVs are nanoparticles that contain a treasure trove of large numbers of biomarkers each present at very low levels. Sample processing procedures can enrich for these vesicles and allow for the enhanced detection of proteins in downstream applications such as comprehensive proteomics methods using data-independent acquisition (DIA) and LC-MS/MS.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Biomarcadores de Tumor/metabolismo , Cromatografía Liquida , Digestión , Vesículas Extracelulares/metabolismo , Humanos , Biopsia Líquida , Neoplasias/diagnóstico , Neoplasias/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem
5.
Biochem Mol Biol Educ ; 49(3): 361-371, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33426769

RESUMEN

Due to its distinct phenotype and relatively simple inheritance pattern, the phenylthiocarbamide (PTC) loci is frequently utilized in teaching laboratories to demonstrate genetic concepts such as Mendelian inheritance and population genetics. We have developed a next-generation sequencing and bioinformatics approach to analyze the PTC gene locus to reveal single nucleotide polymorphism (SNP) variation at nucleotide position 785 that predicts tasting ability in humans. Here students purify DNA from their own cheek cells, perform polymerase chain reaction (PCR) amplification of the PTC gene followed by cleaved amplified polymorphic sequence (CAPS) testing. Students perform a second PCR on the PTC loci using high-fidelity Taq to create bar-coded amplicons for next-generation sequencing on the Ion Torrent Personal Genome Machine. Bioinformatic verification reveals polymorphic variation by aligning the entire class PTC PCR fragment sequence to the human gene using Bowtie2 and visualizing the results in the Integrated Genome Viewer. This exercise presents a learning opportunity for students to use next-generation sequencing to predict their own PTC taste sensitivity phenotype coupled with the standard CAPS method. This approach brings the PTC teaching method into the genomics era.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Laboratorios/normas , Feniltiourea/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Gusto/fisiología , Biología Computacional/educación , Genómica/educación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fenotipo , Feniltiourea/química
6.
PLoS One ; 15(8): e0236674, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32756600

RESUMEN

In Sub-Saharan Africa cassava (Manihot esculenta Crantz) is one of the most important food crops where more than 40% of the population relies on it as their staple carbohydrate source. Biotic constraints such as viral diseases, mainly Cassava Mosaic Disease (CMD) and Cassava Brown Streak Disease (CBSD), and arthropod pests, particularly Cassava Green Mite (CGM), are major constraints to the realization of cassava's full production potential in Africa. To address these problems, we aimed to map the quantitative trait loci (QTL) associated with resistance to CBSD foliar and root necrosis symptoms, foliar CMD and CGM symptoms in a full-sib mapping population derived from the genotypes AR40-6 and Albert. A high-density linkage map was constructed with 2,125 SNP markers using a genotyping-by-sequencing approach. For phenotyping, clonal evaluation trials were conducted with 120 F1 individuals for two consecutive field seasons using an alpha-lattice design at Chambezi and Naliendele, Tanzania. Previously identified QTL for resistance to CBSD foliar symptoms were corroborated, and a new putative QTL for CBSD root necrosis identified (qCBSDRNc14AR) from AR40-6. Two QTL were identified within the region of the previously recognized CMD2 locus from this population in which both parents are thought to possess the CMD2 locus. Interestingly, a minor but consistent QTL, qCGM18AR, for CGM resistance at 3 months after planting stage was also detected and co-localized with a previously identified SSR marker, NS346, linked with CGM resistance. Markers underlying these QTL may be used to increase efficiencies in cassava breeding programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Manihot/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Cruzamiento , Pruebas Genéticas , Genotipo , Manihot/fisiología , Manihot/virología , Enfermedades de las Plantas/virología , Potyviridae/genética , Potyviridae/patogenicidad , Estrés Fisiológico/genética , Tanzanía
7.
Front Plant Sci ; 8: 1168, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785268

RESUMEN

Genetic mapping of quantitative trait loci (QTL) for resistance to cassava brown streak disease (CBSD), cassava mosaic disease (CMD), and cassava green mite (CGM) was performed using an F1 cross developed between the Tanzanian landrace, Kiroba, and a breeding line, AR37-80. The population was evaluated for two consecutive years in two sites in Tanzania. A genetic linkage map was derived from 106 F1 progeny and 1,974 SNP markers and spanned 18 chromosomes covering a distance of 1,698 cM. Fifteen significant QTL were identified; two are associated with CBSD root necrosis only, and were detected on chromosomes V and XII, while seven were associated with CBSD foliar symptoms only and were detected on chromosomes IV, VI, XVII, and XVIII. QTL on chromosomes 11 and 15 were associated with both CBSD foliar and root necrosis symptoms. Two QTL were found to be associated with CMD and were detected on chromosomes XII and XIV, while two were associated with CGM and were identified on chromosomes V and X. There are large Manihot glaziovii introgression regions in Kiroba on chromosomes I, XVII, and XVIII. The introgression segments on chromosomes XVII and XVIII overlap with QTL associated with CBSD foliar symptoms. The introgression region on chromosome I is of a different haplotype to the characteristic "Amani haplotype" found in the landrace Namikonga and others, and unlike some other genotypes, Kiroba does not have a large introgression block on chromosome IV. Kiroba is closely related to a sampled Tanzanian "tree cassava." This supports the observation that some of the QTL associated with CBSD resistance in Kiroba are different to those observed in another variety, Namikonga.

8.
Plant Physiol ; 168(4): 1830-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26045464

RESUMEN

In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana) to a crop, rice (Oryza sativa), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants. To uncover such conserved N-regulatory network modules, we first generated an N-regulatory network based solely on rice transcriptome and gene interaction data. Next, we enhanced the network knowledge in the rice N-regulatory network using transcriptome and gene interaction data from Arabidopsis and new data from Arabidopsis and rice plants exposed to the same N treatment conditions. This cross-species network analysis uncovered a set of N-regulated transcription factors (TFs) predicted to target the same genes and network modules in both species. Supernode analysis of the TFs and their targets in these conserved network modules uncovered genes directly related to N use (e.g. N assimilation) and to other shared biological processes indirectly related to N. This cross-species network approach was validated with members of two TF families in the supernode network, BASIC-LEUCINE ZIPPER TRANSCRIPTION FACTOR1-TGA and HYPERSENSITIVITY TO LOW PI-ELICITED PRIMARY ROOT SHORTENING1 (HRS1)/HRS1 Homolog family, which have recently been experimentally validated to mediate the N response in Arabidopsis.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Nitrógeno/farmacología , Oryza/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Modelos Genéticos , Mutación , Nitrógeno/metabolismo , Oryza/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Especificidad de la Especie , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Genome Biol ; 16: 79, 2015 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-25928034

RESUMEN

BACKGROUND: Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histone methyltransferase within a multicellular organism. RESULTS: To assess the specific role of SDG8, we examine how the global histone methylation patterns and transcriptome were altered in the sdg8-5 deletion mutant compared to wild type, within the context of transient light and carbon treatments. Our results reveal that the sdg8 deletion is associated with a significant reduction of H3K36me3, preferentially towards the 3' end of the gene body, accompanied by a reduction in gene expression. We uncover 728 direct targets of SDG8 that have altered methylation in the sdg8-5 mutant and are also bound by SDG8. As a group, this set of SDG8 targets is enriched in specific biological processes including defense, photosynthesis, nutrient metabolism and energy metabolism. Importantly, 64% of these SDG8 targets are responsive to light and/or carbon signals. CONCLUSIONS: The histone methyltransferase SDG8 functions to regulate the H3K36 methylation of histones associated with gene bodies in Arabidopsis. The H3K36me3 mark in turn is associated with high-level expression of a specific set of light and/or carbon responsive genes involved in photosynthesis, metabolism and energy production.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , N-Metiltransferasa de Histona-Lisina/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Metilación de ADN , Eliminación de Gen , Perfilación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Familia de Multigenes , Reproducibilidad de los Resultados
10.
BMC Genomics ; 14: 701, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24119003

RESUMEN

BACKGROUND: Nitrate and other nitrogen metabolites can act as signals that regulate global gene expression in plants. Adaptive changes in plant morphology and physiology triggered by changes in nitrate availability are partly explained by these changes in gene expression. Despite several genome-wide efforts to identify nitrate-regulated genes, no comprehensive study of the Arabidopsis root transcriptome under contrasting nitrate conditions has been carried out. RESULTS: In this work, we employed the Illumina high throughput sequencing technology to perform an integrated analysis of the poly-A + enriched and the small RNA fractions of the Arabidopsis thaliana root transcriptome in response to nitrate treatments. Our sequencing strategy identified new nitrate-regulated genes including 40 genes not represented in the ATH1 Affymetrix GeneChip, a novel nitrate-responsive antisense transcript and a new nitrate responsive miRNA/TARGET module consisting of a novel microRNA, miR5640 and its target, AtPPC3. CONCLUSIONS: Sequencing of small RNAs and mRNAs uncovered new genes, and enabled us to develop new hypotheses for nitrate regulation and coordination of carbon and nitrogen metabolism.


Asunto(s)
Arabidopsis/genética , Genes de Plantas/genética , Nitratos/farmacología , ARN de Planta/metabolismo , Análisis de Secuencia de ARN/métodos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biblioteca de Genes , Variación Genética/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Poli A/metabolismo , ARN de Planta/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
11.
PLoS Genet ; 9(9): e1003760, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039603

RESUMEN

Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such "tunability" in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment - a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment.


Asunto(s)
Arabidopsis/genética , Interacción Gen-Ambiente , Nitrógeno/metabolismo , Desarrollo de la Planta/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estudio de Asociación del Genoma Completo , Mutación , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética
12.
PLoS Genet ; 7(12): e1002411, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22194700

RESUMEN

A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification.


Asunto(s)
Evolución Biológica , Cycadopsida/genética , Genoma de Planta , Magnoliopsida/genética , Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN , Evolución Molecular , Flores/genética , Genes de Plantas/genética , Genómica , Oryza/genética , Filogenia , Plantas , Interferencia de ARN , ARN Interferente Pequeño/genética , Semillas
13.
BMC Syst Biol ; 4: 111, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20704717

RESUMEN

BACKGROUND: Nitrogen and light are two major regulators of plant metabolism and development. While genes involved in the control of each of these signals have begun to be identified, regulators that integrate gene responses to nitrogen and light signals have yet to be determined. Here, we evaluate the role of bZIP1, a transcription factor involved in light and nitrogen sensing, by exposing wild-type (WT) and bZIP1 T-DNA null mutant plants to a combinatorial space of nitrogen (N) and light (L) treatment conditions and performing transcriptome analysis. We use ANOVA analysis combined with clustering and Boolean modeling, to evaluate the role of bZIP1 in mediating L and N signaling genome-wide. RESULTS: This transcriptome analysis demonstrates that a mutation in the bZIP1 gene can alter the L and/or N-regulation of several gene clusters. More surprisingly, the bZIP1 mutation can also trigger N and/or L regulation of genes that are not normally controlled by these signals in WT plants. This analysis also reveals that bZIP1 can, to a large extent, invert gene regulation (e.g., several genes induced by N in WT plants are repressed by N in the bZIP1 mutant). CONCLUSION: These findings demonstrate that the bZIP1 mutation triggers a genome-wide de-regulation in response to L and/or N signals that range from i) a reduction of the L signal effect, to ii) unlocking gene regulation in response to L and N combinations. This systems biology approach demonstrates that bZIP1 tunes L and N signaling relationships genome-wide, and can suppress regulatory mechanisms hypothesized to be needed at different developmental stages and/or environmental conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Luz , Modelos Biológicos , Nitrógeno/farmacología , Arabidopsis/citología , Arabidopsis/metabolismo , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genoma de Planta/genética , Genómica , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación
14.
Genome Biol Evol ; 2: 225-39, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20624728

RESUMEN

We use measures of congruence on a combined expressed sequenced tag genome phylogeny to identify proteins that have potential significance in the evolution of seed plants. Relevant proteins are identified based on the direction of partitioned branch and hidden support on the hypothesis obtained on a 16-species tree, constructed from 2,557 concatenated orthologous genes. We provide a general method for detecting genes or groups of genes that may be under selection in directions that are in agreement with the phylogenetic pattern. Gene partitioning methods and estimates of the degree and direction of support of individual gene partitions to the overall data set are used. Using this approach, we correlate positive branch support of specific genes for key branches in the seed plant phylogeny. In addition to basic metabolic functions, such as photosynthesis or hormones, genes involved in posttranscriptional regulation by small RNAs were significantly overrepresented in key nodes of the phylogeny of seed plants. Two genes in our matrix are of critical importance as they are involved in RNA-dependent regulation, essential during embryo and leaf development. These are Argonaute and the RNA-dependent RNA polymerase 6 found to be overrepresented in the angiosperm clade. We use these genes as examples of our phylogenomics approach and show that identifying partitions or genes in this way provides a platform to explain some of the more interesting organismal differences among species, and in particular, in the evolution of plants.


Asunto(s)
Evolución Molecular , Genes de Plantas , Proteínas de Plantas/genética , Plantas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Minería de Datos , Epigénesis Genética , Genómica , Magnoliopsida/clasificación , Magnoliopsida/genética , Magnoliopsida/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Filogenia , Plantas/clasificación , Plantas/metabolismo , ARN de Planta/genética , ARN Polimerasa Dependiente del ARN/genética , Selección Genética , Homología de Secuencia de Aminoácido
15.
Plant Physiol ; 152(2): 500-15, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20007449

RESUMEN

Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org.


Asunto(s)
Sistemas de Administración de Bases de Datos , Genómica , Plantas/genética , Biología de Sistemas , Biología Computacional/métodos , Bases de Datos Genéticas , Redes Reguladoras de Genes , Genes de Plantas , Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos , Interfaz Usuario-Computador
16.
BMC Bioinformatics ; 10: 435, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20025756

RESUMEN

BACKGROUND: Prediction of transcriptional regulatory mechanisms in Arabidopsis has become increasingly critical with the explosion of genomic data now available for both gene expression and gene sequence composition. We have shown in previous work 1, that a combination of correlation measurements and cis-regulatory element (CRE) detection methods are effective in predicting targets for candidate transcription factors for specific case studies which were validated. However, to date there has been no quantitative assessment as to which correlation measures or CRE detection methods used alone or in combination are most effective in predicting TF-->target relationships on a genome-wide scale. RESULTS: We tested several widely used methods, based on correlation (Pearson and Spearman Rank correlation) and cis-regulatory element (CRE) detection (>or=1 CRE or CRE over-representation), to determine which of these methods individually or in combination is the most effective by various measures for making regulatory predictions. To predict the regulatory targets of a transcription factor (TF) of interest, we applied these methods to microarray expression data for genes that were regulated over treatment and control conditions in wild type (WT) plants. Because the chosen data sets included identical experimental conditions used on TF over-expressor or T-DNA knockout plants, we were able to test the TF-->target predictions made using microarray data from WT plants, with microarray data from mutant/transgenic plants. For each method, or combination of methods, we computed sensitivity, specificity, positive and negative predictive value and the F-measure of balance between sensitivity and positive predictive value (precision). This analysis revealed that the >or=1 CRE and Spearman correlation (used alone or in combination) were the most balanced CRE detection and correlation methods, respectively with regard to their power to accurately predict regulatory-target interactions. CONCLUSION: These findings provide an approach and guidance for researchers interested in predicting transcriptional regulatory mechanisms using microarray data that they generate (or microarray data that is publically available) combined with CRE detection in promoter sequence data.


Asunto(s)
Arabidopsis/genética , Biología Computacional/métodos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos
17.
PLoS One ; 4(6): e5764, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19503618

RESUMEN

BACKGROUND: Genome level analyses have enhanced our view of phylogenetics in many areas of the tree of life. With the production of whole genome DNA sequences of hundreds of organisms and large-scale EST databases a large number of candidate genes for inclusion into phylogenetic analysis have become available. In this work, we exploit the burgeoning genomic data being generated for plant genomes to address one of the more important plant phylogenetic questions concerning the hierarchical relationships of the several major seed plant lineages (angiosperms, Cycadales, Gingkoales, Gnetales, and Coniferales), which continues to be a work in progress, despite numerous studies using single, few or several genes and morphology datasets. Although most recent studies support the notion that gymnosperms and angiosperms are monophyletic and sister groups, they differ on the topological arrangements within each major group. METHODOLOGY: We exploited the EST database to construct a supermatrix of DNA sequences (over 1,200 concatenated orthologous gene partitions for 17 taxa) to examine non-flowering seed plant relationships. This analysis employed programs that offer rapid and robust orthology determination of novel, short sequences from plant ESTs based on reference seed plant genomes. Our phylogenetic analysis retrieved an unbiased (with respect to gene choice), well-resolved and highly supported phylogenetic hypothesis that was robust to various outgroup combinations. CONCLUSIONS: We evaluated character support and the relative contribution of numerous variables (e.g. gene number, missing data, partitioning schemes, taxon sampling and outgroup choice) on tree topology, stability and support metrics. Our results indicate that while missing characters and order of addition of genes to an analysis do not influence branch support, inadequate taxon sampling and limited choice of outgroup(s) can lead to spurious inference of phylogeny when dealing with phylogenomic scale data sets. As expected, support and resolution increases significantly as more informative characters are added, until reaching a threshold, beyond which support metrics stabilize, and the effect of adding conflicting characters is minimized.


Asunto(s)
Arabidopsis/genética , Etiquetas de Secuencia Expresada , Genoma de Planta , Interpretación Estadística de Datos , Bases de Datos Genéticas , Genes de Plantas , Genómica , Funciones de Verosimilitud , Modelos Genéticos , Filogenia , Plantas , Semillas/metabolismo , Análisis de Secuencia de ADN
18.
BMC Syst Biol ; 2: 31, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18387196

RESUMEN

BACKGROUND: Light and carbon are two important interacting signals affecting plant growth and development. The mechanism(s) and/or genes involved in sensing and/or mediating the signaling pathways involving these interactions are unknown. This study integrates genetic, genomic and systems approaches to identify a genetically perturbed gene network that is regulated by the interaction of carbon and light signaling in Arabidopsis. RESULTS: Carbon and light insensitive (cli) mutants were isolated. Microarray data from cli186 is analyzed to identify the genes, biological processes and gene networks affected by the integration of light and carbon pathways. Analysis of this data reveals 966 genes regulated by light and/or carbon signaling in wild-type. In cli186, 216 of these light/carbon regulated genes are misregulated in response to light and/or carbon treatments where 78% are misregulated in response to light and carbon interactions. Analysis of the gene lists show that genes in the biological processes "energy" and "metabolism" are over-represented among the 966 genes regulated by carbon and/or light in wild-type, and the 216 misregulated genes in cli186. To understand connections among carbon and/or light regulated genes in wild-type and the misregulated genes in cli186, the microarray data is interpreted in the context of metabolic and regulatory networks. The network created from the 966 light/carbon regulated genes in wild-type, reveals that cli186 is affected in the light and/or carbon regulation of a network of 60 connected genes, including six transcription factors. One transcription factor, HAT22 appears to be a regulatory "hub" in the cli186 network as it shows regulatory connections linking a metabolic network of genes involved in "amino acid metabolism", "C-compound/carbohydrate metabolism" and "glycolysis/gluconeogenesis". CONCLUSION: The global misregulation of gene networks controlled by light and carbon signaling in cli186 indicates that it represents one of the first Arabidopsis mutants isolated that is specifically disrupted in the integration of both carbon and light signals to control the regulation of metabolic, developmental and regulatory genes. The network analysis of misregulated genes suggests that CLI186 acts to integrate light and carbon signaling interactions and is a master regulator connecting the regulation of a host of downstream metabolic and regulatory processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbono/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Arabidopsis/efectos de la radiación , Simulación por Computador , Genómica/métodos , Proteoma/metabolismo , Transducción de Señal/efectos de la radiación , Integración de Sistemas , Teoría de Sistemas
19.
Proc Natl Acad Sci U S A ; 105(12): 4939-44, 2008 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18344319

RESUMEN

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Nitrógeno/farmacología , Factores de Transcripción/genética , Ritmo Circadiano/efectos de los fármacos , Genoma de Planta , Ácido Glutámico/farmacología , Glutamina/farmacología , Modelos Genéticos , Nitratos/farmacología , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Plantones/efectos de los fármacos , Plantones/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
20.
Bioinformatics ; 23(2): 259-61, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17018536

RESUMEN

UNLABELLED: Sungear is a software system that supports a rapid, visually interactive and biologist-driven comparison of large datasets. The datasets can come from microarray experiments (e.g. genes induced in each experiment), from comparative genomics (e.g. genes present in each genome) or even from non-biological applications (e.g. demographics or baseball statistics). Sungear represents multiple datasets as vertices in a polygon. Each possible intersection among the sets is represented as a circle inside the polygon. The position of the circle is determined by the position of the vertices represented in the intersection and the area of the circle is determined by the number of elements in the intersection. Sungear shows which Gene Ontology terms are over-represented in a subset of circles or anchors. The intuitive Sungear interface has enabled biologists to determine quickly which dataset or groups of datasets play a role in a biological function of interest. AVAILABILITY: A live online version of Sungear can be found at http://virtualplant-prod.bio.nyu.edu/cgi-bin/sungear/index.cgi


Asunto(s)
Mapeo Cromosómico/métodos , Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Genética de Población , Almacenamiento y Recuperación de la Información/métodos , Programas Informáticos , Interfaz Usuario-Computador , Algoritmos , Gráficos por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...