Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE J Biomed Health Inform ; 27(5): 2501-2511, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37027652

RESUMEN

Assessing fetal development is essential to the provision of healthcare for both mothers and fetuses. In low- and middle-income countries, conditions that increase the risk of fetal growth restriction (FGR) are often more prevalent. In these regions, barriers to accessing healthcare and social services exacerbate fetal maternal health problems. One of these barriers is the lack of affordable diagnostic technologies. To address this issue, this work introduces an end-to-end algorithm applied to a low-cost, hand-held Doppler ultrasound device for estimating gestational age (GA), and by inference, FGR. The Doppler ultrasound signals used in this study were collected from 226 pregnancies (45 low birth weight at delivery) between 5 and 9 months GA by lay midwives in highland Guatemala. We designed a hierarchical deep sequence learning model with an attention mechanism to learn the normative dynamics of fetal cardiac activity in different stages of development. This resulted in a state-of-the-art GA estimation performance, with an average error of 0.79 months. This is close to the theoretical minimum for the given quantization level of one month. The model was then tested on Doppler recordings of the fetuses with low birth weight and the estimated GA was shown to be lower than the GA calculated from last menstruation. Thus, this could be interpreted as a potential sign of developmental retardation (or FGR) associated with low birth weight, and referral and intervention may be necessary.


Asunto(s)
Retardo del Crecimiento Fetal , Recién Nacido Pequeño para la Edad Gestacional , Embarazo , Recién Nacido , Femenino , Humanos , Edad Gestacional , Retardo del Crecimiento Fetal/diagnóstico por imagen , Ultrasonografía Prenatal
2.
Front Artif Intell ; 4: 543176, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095816

RESUMEN

Routine blood pressure (BP) measurement in pregnancy is commonly performed using automated oscillometric devices. Since no wireless oscillometric BP device has been validated in preeclamptic populations, a simple approach for capturing readings from such devices is needed, especially in low-resource settings where transmission of BP data from the field to central locations is an important mechanism for triage. To this end, a total of 8192 BP readings were captured from the Liquid Crystal Display (LCD) screen of a standard Omron M7 self-inflating BP cuff using a cellphone camera. A cohort of 49 lay midwives captured these data from 1697 pregnant women carrying singletons between 6 weeks and 40 weeks gestational age in rural Guatemala during routine screening. Images exhibited a wide variability in their appearance due to variations in orientation and parallax; environmental factors such as lighting, shadows; and image acquisition factors such as motion blur and problems with focus. Images were independently labeled for readability and quality by three annotators (BP range: 34-203 mm Hg) and disagreements were resolved. Methods to preprocess and automatically segment the LCD images into diastolic BP, systolic BP and heart rate using a contour-based technique were developed. A deep convolutional neural network was then trained to convert the LCD images into numerical values using a multi-digit recognition approach. On readable low- and high-quality images, this proposed approach achieved a 91% classification accuracy and mean absolute error of 3.19 mm Hg for systolic BP and 91% accuracy and mean absolute error of 0.94 mm Hg for diastolic BP. These error values are within the FDA guidelines for BP monitoring when poor quality images are excluded. The performance of the proposed approach was shown to be greatly superior to state-of-the-art open-source tools (Tesseract and the Google Vision API). The algorithm was developed such that it could be deployed on a phone and work without connectivity to a network.

3.
Physiol Meas ; 41(8): 085007, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32585651

RESUMEN

OBJECTIVE: One dimensional (1D) Doppler ultrasound (DUS) is commonly used for fetal health assessment, during both regular prenatal visits and labor. It is used in preference to ECG and other modalities because of its simplicity and cost. To date, all analysis of such data has been confined to a smoothed, windowed heart rate estimation derived from the 1D DUS signal, reducing the potential of short-term variability information. A first step in improving the assessment of short-term variability of the fetal heart rate (FHR) is through implementing an accurate beat detector for 1D DUS signals. APPROACH: This work presents an unsupervised probabilistic segmentation method enabled by a hidden semi-Markov model (HSMM). The proposed method employs envelope and spectral features for an online segmentation of fetal 1D DUS signal. The beat onsets and fetal cardiac beat-to-beat intervals are then estimated from the segmentations. For this work, two data sets were used, including 1D DUS recordings from five fetuses recorded in Germany, comprising 6521 beats and 45.06 minutes of data (dataset 1). Simultaneous fetal ECG (fECG) was used as the reference for beat timing. Dataset 2, comprising 4044 beats captured from 17 subjects in the UK was hand scored for beat location and was used as an independent held-out test set. Leave-one-out subject cross-validation was used for parameter tuning on dataset 1. No retraining was performed for dataset 2. To assess the performance of the beat onset detection, the root mean square error (RMSE), F1 score, sensitivity, positive predictivity (PPV) and the error in several standard common heart rate variability metrics were used. These metrics were evaluated on three fiducial points: (1) beat onset, (2) beat offset, and (3) middle of beat interval. MAIN RESULTS: In dataset 1, the proposed method provided an RMSE of 20 ms, F1 score of 97.5 %, a Se of 97.6%, and a PPV of 97.3%. In dataset 2, the proposed method achieved an RMSE of 26 ms, an F1 score of 98.5 %, a Se of 98.0 % and a PPV of 98.9 %. It was also determined that the best beat-to-beat interval was derived from the onset of each beat. For the dataset 2, significant correlations were found in all short term heart rate variability metrics tested, both in the time and frequency domain. Only the proportion of successive normal-to-normal interval differences greater than 20 ms (pNN20) exhibited a significant absolute difference. SIGNIFICANCE: This work presents the first-ever description of an algorithm to identify cardiac beats with 1D DUS, closely matching the fetal ECG-derived beats, to enable short-term heart rate variability analysis. The novel algorithm proposed requires no human labeling of data, and could have applicability beyond 1D DUS to other similar highly variable time series.


Asunto(s)
Electrocardiografía , Frecuencia Cardíaca Fetal , Ultrasonografía Doppler , Algoritmos , Femenino , Pruebas de Función Cardíaca , Humanos , Embarazo , Procesamiento de Señales Asistido por Computador
4.
Physiol Meas ; 40(2): 025005, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30699403

RESUMEN

OBJECTIVE: Open research on fetal heart rate (FHR) estimation is relatively rare, and evidence for the utility of metrics derived from Doppler ultrasound devices has historically remained hidden in the proprietary documentation of commercial entities, thereby inhibiting its assessment and improvement. Nevertheless, recent studies have attempted to improve FHR estimation; however, these methods were developed and tested using datasets composed of few subjects and are therefore unlikely to be generalizable on a population level. The work presented here introduces a reproducible and generalizable autocorrelation (AC)-based method for FHR estimation from one-dimensional Doppler ultrasound (1D-DUS) signals. APPROACH: Simultaneous fetal electrocardiogram (fECG) and 1D-DUS signals generated by a hand-held Doppler transducer in a fixed position were captured by trained healthcare workers in a European hospital. The fECG QRS complexes were identified using a previously published fECG extraction algorithm and were then over-read to ensure accuracy. An AC-based method to estimate FHR was then developed on this data, using a total of 721 1D-DUS segments, each 3.75 s long, and parameters were tuned with Bayesian optimization. The trained FHR estimator was tested on two additional (independent) hand-annotated Doppler-only datasets recorded with the same device but on different populations: one composed of 3938 segments (from 99 fetuses) acquired in rural Guatemala, and another composed of 894 segments (from 17 fetuses) recorded in a hospital in the UK. MAIN RESULTS: The proposed AC-based method was able to estimate FHR within 10% of the reference FHR values 96% of the time, with an accuracy of 97% for manually identified good quality segments in both of the independent test sets. SIGNIFICANCE: This is the first work to publish open source code for FHR estimation from 1D-DUS data. The method was shown to satisfy estimations within 10% of the reference FHR values and it therefore defines a minimum accuracy for the field to match or surpass. Our work establishes a basis from which future methods can be developed to more accurately estimate FHR variability for assessing fetal wellbeing from 1D-DUS signals.


Asunto(s)
Monitoreo Fetal/métodos , Frecuencia Cardíaca Fetal , Procesamiento de Señales Asistido por Computador , Ultrasonografía Doppler , Benchmarking , Electrocardiografía , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...