Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(48): 45817-45833, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075756

RESUMEN

Tissue-specific implications of SARS-CoV-2-encoded accessory proteins are not fully understood. SARS-CoV-2 infection can severely affect three major organs-the heart, lungs, and brain. We analyzed SARS-CoV-2 ORF3a interacting host proteins in these three major organs. Furthermore, we identified common and unique interacting host proteins and their targeting miRNAs (lung and brain) and delineated associated biological processes by reanalyzing RNA-seq data from the brain (COVID-19-infected/uninfected choroid plexus organoid study), lung tissue from COVID-19 patients/healthy subjects, and cardiomyocyte cells-based transcriptomics analyses. Our in silico studies showed ORF3a interacting proteins could vary depending upon tissues. The number of unique ORF3a interacting proteins in the brain, lungs, and heart were 10, 7, and 1, respectively. Though common pathways influenced by SARS-CoV-2 infection were more, unique 21 brain and 7 heart pathways were found. One unique pathway for the heart was negative regulation of calcium ion transport. Reported observations of COVID-19 patients with a history of hypertension taking calcium channel blockers (CCBs) or dihydropyridine CCBs had an elevated rate of intubation or increased rate of intubation/death, respectively. Also, the likelihood of hospitalization of chronic CCB users with COVID-19 was greater in comparison to long-term angiotensin-converting enzyme inhibitors/angiotensin receptor blockers users. Further studies are necessary to confirm this. miRNA analysis of ORF3a interacting proteins in the brain and lungs revealed 3 of 37 brain miRNAs and 1 of 25 lung miRNAs with high degree and betweenness indicating their significance as hubs in the interaction network. Our study could help in identifying potential tissue-specific COVID-19 drug/drug repurposing targets.

2.
Biotechnol Adv ; 69: 108267, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813174

RESUMEN

Traditionally, recombinant protein production has been done in several expression hosts of bacteria, fungi, and majorly CHO (Chinese Hamster Ovary) cells; few have high production costs and are susceptible to harmful toxin contamination. Green algae have the potential to produce recombinant proteins in a more sustainable manner. Microalgal diversity leads to offer excellent opportunities to produce glycosylated antibodies. An antibody with humanized glycans plays a crucial role in cellular communication that works to regulate cells and molecules, to control disease, and to stimulate immunity. Therefore, it becomes necessary to understand the role of abiotic factors (light, temperature, pH, etc.) in the production of bioactive molecules and molecular mechanisms of product synthesis from microalgae which would lead to harnessing the potential of algal bio-refinery. However, the potential of microalgae as the source of bio-refinery has been less explored. In the present review, omics approaches for microalgal engineering, methods of humanized glycoproteins production focusing majorly on N-glycosylation pathways, light-based regulation of glycosylation machinery, and production of antibodies with humanized glycans in microalgae with a major emphasis on modulation of post-translation machinery of microalgae which might play a role in better understanding of microalgal potential as a source for antibody production along with future perspectives.


Asunto(s)
Biotecnología , Polisacáridos , Cricetinae , Animales , Glicosilación , Células CHO , Cricetulus , Proteínas Recombinantes/genética
3.
Int J Biol Macromol ; 245: 125492, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343610

RESUMEN

Calcium (Ca2+) signaling plays a major role in regulating multiple processes in living cells. The photoreceptor potential in Chlamydomonas triggers the generation of all or no flagellar Ca2+ currents that cause membrane depolarization across the eyespot and flagella. Modulation in membrane potential causes changes in the flagellar waveform, and hence, alters the beating patterns of Chlamydomonas flagella. The rhodopsin-mediated eyespot membrane potential is generated by the photoreceptor Ca2+ current or P-current however, the flagellar Ca2+ currents are mediated by unidentified voltage-gated calcium (VGCC or CaV) and potassium channels (VGKC). The voltage-gated ion channel that associates with ChRs to generate Ca2+ influx across the flagella and its cellular distribution has not yet been identified. Here, we identified putative VGCCs from algae and predicted their novel properties through insilico analysis. We further present experimental evidence on Chlamydomonas reinhardtii VGCCs to predict their novel physiological roles. Our experimental evidences showed that CrVGCC4 localizes to the eyespot and flagella of Chlamydomonas and associates with channelrhodopsins (ChRs). Further in silico interactome analysis of CrVGCCs suggested that they putatively interact with photoreceptor proteins, calcium signaling, and intraflagellar transport components. Expression analysis indicated that these VGCCs and their putative interactors can be perturbed by light stimuli. Collectively, our data suggest that VGCCs in general, and VGCC4 in particular, might be involved in the regulation of the photobehavioral response of Chlamydomonas.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Señalización del Calcio
4.
Int J Biol Macromol ; 243: 125135, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37247713

RESUMEN

Translocation of channelrhodopsins (ChRs) is mediated by the intraflagellar transport (IFT) machinery. However, the functional role of the network involving photoreceptors, IFT and other proteins in controlling algal ciliary motility is still not fully delineated. In the current study, we have identified two important motifs at the C-terminus of ChR1, VXPX and LKNE. VXPX is a known ciliary targeting sequence in animals, and LKNE is a well-known SUMOylation motif. To the best of our knowledge, this study gives prima facie insight into the role of SUMOylation in Chlamydomonas. We prove that VMPS of ChR1 is important for interaction with GTPase CrARL11. We show that SUMO motifs are present in the C-terminus of putative ChR1s from green algae. Performing experiments with n-Ethylmaleimide (NEM) and Ubiquitin-like protease 1 (ULP-1), we show that SUMOylation may modulate ChR1 protein in Chlamydomonas. Experiments with 2D08, a known sumoylation blocker, increased the concentration of ChR1 protein. Finally, we show the endogenous SUMOylated proteins (SUMOylome) of C. reinhardtii, identified by using immunoprecipitation followed by nano-LC-MS/MS detection. This report establishes a link between evolutionarily conserved SUMOylation and ciliary machinery for the maintenance and functioning of cilia across the eukaryotes. Our enriched SUMOylome of C. reinhardtii comprehends the proteins related to ciliary development and photo-signaling, along with the orthologue(s) associated to human ciliopathies as SUMO targets.


Asunto(s)
Chlamydomonas reinhardtii , Animales , Humanos , Chlamydomonas reinhardtii/metabolismo , Channelrhodopsins/metabolismo , Espectrometría de Masas en Tándem , Transporte Biológico , Transducción de Señal
5.
Int J Biol Macromol ; 237: 124163, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965564

RESUMEN

Ca2+ signaling is an important biological process that enable to perceive and communicate information in the cell. Our current understanding of the signaling system suggests that plants and animals have certain differences in signal-sensing mechanisms. The Ca2+-mediated CBL-CIPK module has emerged as a major sensor responder network for Ca2+ signaling and has been speculated to be involved in plant terrestrial life adaptation. This module has previously been reported in Archaeplastids, Chromalveolates, and Excavates. In our experimental analysis of Chlamydomonas reinhardtii CBLs, we proved that the CrCBL1 protein interacts with Phototropin and Channelrhodopsin, and the expression of CrCBLs is modulated by light. Further analysis using chlorophyte and streptophyte algal sequences allowed us to identify the differences that have evolved in CBL and CIPK proteins since plants have progressed from aquatic to terrestrial habitats. Moreover, an investigation of Klebsormidium CBL and CIPK genes led us to know that they are abiotic stress stimuli-responsive, indicating that their role was defined very early during terrestrial adaptations. Structure-based prediction and Ca2+-binding assays indicated that the KnCBL1 protein in Klebsormidium showed a typical Ca2+-binding pocket. In summary, the results of this study suggest that these stress-responsive proteins enable crosstalk between Ca2+ and light signaling pathways very early during plant adaptation from aquatic to terrestrial habitats.


Asunto(s)
Arabidopsis , Chlorophyta , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Estrés Fisiológico , Señalización del Calcio
6.
Biochim Biophys Acta Gen Subj ; 1867(3): 130304, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36627087

RESUMEN

BACKGROUND: Light, oxygen and voltage (LOV) proteins detect blue light by formation of a covalent 'photoadduct' between the flavin chromophore and the neighboring conserved cysteine residue. LOV proteins devoid of this conserved photoactive cysteine are unable to form this 'photoadduct' upon light illumination, but they can still elicit functional response via the formation of neutral flavin radical. Recently, tryptophan residue has been shown to be the primary electron donors to the flavin excited state. METHODS: Photoactive cysteine (Cys42) and tryptophan (Trp68) residues in the LOV1 domain of phototropin1 of Ostreococcus tauri (OtLOV1) was mutated to alanine and threonine respectively. Effect of these mutations have been studied using molecular dynamics simulation and spectroscopic techniques. RESULTS: Molecular dynamics simulation indicated that W68T did not affect the structure of OtLOV1 protein, but C42A leads to some structural changes. An increase in the fluorescence lifetime and quantum yield values was observed for the Trp68 mutant. CONCLUSIONS: An increase in the fluorescence lifetime and quantum yield of Trp68 mutant compared to the wild type protein suggests that Trp68 residue participates in quenching of the flavin excited state followed by photoexcitation. GENERAL SIGNIFICANCE: Enhanced photo-physical properties of Trp68 OtLOV1 mutant might enable its use for the optogenetic and microscopic applications.


Asunto(s)
Simulación de Dinámica Molecular , Triptófano , Triptófano/genética , Cisteína/química , Luz , Mutación
7.
Bioresour Technol ; 369: 128457, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36503094

RESUMEN

Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.


Asunto(s)
Biocombustibles , Microalgas , Multiómica , Microalgas/metabolismo , Redes y Vías Metabólicas , Biomasa
8.
Biophys Physicobiol ; 20(Supplemental): e201008, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38362319

RESUMEN

Rhodopsins have been extensively employed for optogenetic regulation of bioelectrical activity of excitable cells and other cellular processes across biological systems. Various strategies have been adopted to attune the cellular processes at the desired subcellular compartment (plasma membrane, endoplasmic reticulum, Golgi, mitochondria, lysosome) within the cell. These strategies include-adding signal sequences, tethering peptides, specific interaction sites, or mRNA elements at different sites in the optogenetic proteins for plasma membrane integration and subcellular targeting. However, a single approach for organelle optogenetics was not suitable for the relevant optogenetic proteins and often led to the poor expression, mislocalization, or altered physical and functional properties. Therefore, the current study is focused on the native subcellular targeting machinery of algal rhodopsins. The N- and C-terminus signal prediction led to the identification of rhodopsins with diverse organelle targeting signal sequences for the nucleus, mitochondria, lysosome, endosome, vacuole, and cilia. Several identified channelrhodopsins and ion-pumping rhodopsins possess effector domains associated with DNA metabolism (repair, replication, and recombination) and gene regulation. The identified algal rhodopsins with diverse effector domains and encoded native subcellular targeting sequences hold immense potential to establish expanded organelle optogenetic regulation and associated cellular signaling.

10.
Front Oncol ; 11: 676948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490084

RESUMEN

Head and neck cancer (HNC) is among the ten leading malignancies worldwide, with India solely contributing one-third of global oral cancer cases. The current focus of all cutting-edge strategies against this global malignancy are directed towards the heterogeneous tumor microenvironment that obstructs most treatment blueprints. Subsequent to the portrayal of established information, the review details the application of single cell technology, organoids and spheroid technology in relevance to head and neck cancer and the tumor microenvironment acknowledging the resistance pattern of the heterogeneous cell population in HNC. Bioinformatic tools are used for study of differentially expressed genes and further omics data analysis. However, these tools have several challenges and limitations when analyzing single-cell gene expression data that are discussed briefly. The review further examines the omics of HNC, through comprehensive analyses of genomics, transcriptomics, proteomics, metabolomics, and epigenomics profiles. Patterns of alterations vary between patients, thus heterogeneity and molecular alterations between patients have driven the clinical significance of molecular targeted therapies. The analyses of potential molecular targets in HNC are discussed with connotation to the alteration of key pathways in HNC followed by a comprehensive study of protein kinases as novel drug targets including its ATPase and additional binding pockets, non-catalytic domains and single residues. We herein review, the therapeutic agents targeting the potential biomarkers in light of new molecular targeted therapies. In the final analysis, this review suggests that the development of improved target-specific personalized therapies can combat HNC's global plight.

11.
RSC Chem Biol ; 2(3): 863-875, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34458814

RESUMEN

Adenosine 3',5'-cyclic monophosphate (cAMP) is a key second messenger that activates several signal transduction pathways in eukaryotic cells. Alteration of basal levels of cAMP is known to activate protein kinases, regulate phosphodiesterases and modulate the activity of ion channels such as Hyper polarization-activated cyclic nucleotide gated channels (HCN). Recent advances in optogenetics have resulted in the availability of novel genetically encoded molecules with the capability to alter cytoplasmic profiles of cAMP with unprecedented spatial and temporal precision. Using single molecule based super-resolution microscopy and different optogenetic modulators of cellular cAMP in both live and fixed cells, we illustrate a novel paradigm to report alteration in nanoscale confinement of ectopically expressed HCN channels. We characterized the efficacy of cAMP generation using ensemble photoactivation of different optogenetic modulators. Then we demonstrate that local modulation of cAMP alters the exchange of membrane bound HCN channels with its nanoenvironment. Additionally, using high density single particle tracking in combination with both acute and chronic optogenetic elevation of cAMP in the cytoplasm, we show that HCN channels are confined to sub 100 nm sized functional domains on the plasma membrane. The nanoscale properties of these domains along with the exchange kinetics of HCN channels in and out of these molecular zones are altered upon temporal changes in the cytoplasmic cAMP. Using HCN2 point mutants and a truncated construct of HCN2 with altered sensitivity to cAMP, we confirmed these alterations in lateral organization of HCN2 to be specific to cAMP binding. Thus, combining these advanced non-invasive paradigms, we report a cAMP dependent ensemble and single particle behavior of HCN channels mediated by its cyclic nucleotide binding domain, opening innovative ways to dissect biochemical pathways at the nanoscale and real-time in living cells.

12.
Cell Biol Int ; 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34288241

RESUMEN

Vertebrates have an elaborate and functionally segmented body. It evolves from a single cell by systematic cell proliferation but attains a complex body structure with exquisite precision. This development requires two cellular events: cell cycle and ciliogenesis. For these events, the dynamic molecular signaling is converged at the centriole. The cell cycle helps in cell proliferation and growth of the body and is a highly regulated and integrated process. Its errors cause malignancies and developmental disorders. The cells newly proliferated are organized during organogenesis. For a cellular organization, dedicated signaling hubs are developed in the cells, and most often cilia are utilized. The cilium is generated from one of the centrioles involved in cell proliferation. The developmental signaling pathways hosted in cilia are essential for the elaboration of the body plan. The cilium's compartmental seclusion is ideal for noise-free molecular signaling and is essential for the precision of the body layout. The dysfunctional centrioles and primary cilia distort the development of body layout that manifest as serious developmental disorders. Thus, centriole has a dual role in the growth and cellular organization. It organizes dynamically expressed molecules of cell cycle and ciliogenesis and plays a balancing act to generate new cells and organize them during development. A putative master molecule may regulate and coordinate the dynamic gene expression at the centrioles. The convergence of many critical signaling components at the centriole reiterates the idea that centriole is a major molecular workstation involved in elaborating the structural design and complexity in vertebrates. This article is protected by copyright. All rights reserved.

13.
Biochem Biophys Res Commun ; 569: 187-192, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34256187

RESUMEN

Cofilin-1, an actin dynamizing protein, forms actin-cofilin rods, which is one of the major events that exacerbates the pathophysiology of amyloidogenic diseases. Cysteine oxidation in cofilin-1 under oxidative stress plays a crucial role in the formation of these rods. Others and we have reported that cofilin-1 possesses a self-oligomerization property in vitro and in vivo under physiological conditions. However, it remains elusive if cofilin-1 itself forms amyloid-like structures. We, therefore, hypothesized that cofilin-1 might form amyloid-like assemblies, with a potential to intensify the pathophysiology of amyloid-linked diseases. We used various in silico and in vitro techniques and examined the amyloid-forming propensity of cofilin-1. The study confirms that cofilin-1 possesses an intrinsic tendency of aggregation and forms amyloid-like structures in vitro. Further, we studied the effect of cysteine oxidation on the stability and structural features of cofilin-1. Our data show that oxidation at Cys-80 renders cofilin-1 unstable, leading to a partial loss of protein structure. The results substantiate our hypothesis and establish a strong possibility that cofilin-1 aggregation might play a role in cofilin-mediated pathology and the progression of several amyloid-linked diseases.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Cofilina 1/metabolismo , Cisteína/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/genética , Cofilina 1/química , Cofilina 1/genética , Simulación por Computador , Cisteína/química , Cisteína/genética , Humanos , Modelos Moleculares , Mutación , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Oxidación-Reducción , Puntaje de Propensión , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Estabilidad Proteica , Desplegamiento Proteico , Homología de Secuencia de Aminoácido
14.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33836052

RESUMEN

The use of CRISPR/Cas endonucleases has revolutionized gene editing techniques for research on Chlamydomonas reinhardtii. To better utilize the CRISPR/Cas system, it is essential to develop a more comprehensive understanding of the DNA repair pathways involved in genome editing. In this study, we have analyzed contributions from canonical KU80/KU70-dependent nonhomologous end-joining (cNHEJ) and DNA polymerase theta (POLQ)-mediated end joining on SpCas9-mediated untemplated mutagenesis and homology-directed repair (HDR)/gene inactivation in Chlamydomonas. Using CRISPR/SpCas9 technology, we generated DNA repair-defective mutants ku80, ku70, polQ for gene targeting experiments. Our results show that untemplated repair of SpCas9-induced double strand breaks results in mutation spectra consistent with an involvement of both KU80/KU70 and POLQ. In addition, the inactivation of POLQ was found to negatively affect HDR of the inactivated paromomycin-resistant mut-aphVIII gene when donor single-stranded oligos were used. Nevertheless, mut-aphVIII was still repaired by homologous recombination in these mutants. POLQ inactivation suppressed random integration of transgenes co-transformed with the donor ssDNA. KU80 deficiency did not affect these events but instead was surprisingly found to stimulate HDR/gene inactivation. Our data suggest that in Chlamydomonas, POLQ is the main contributor to CRISPR/Cas-induced HDR and random integration of transgenes, whereas KU80/KU70 potentially plays a secondary role. We expect our results will lead to improvement of genome editing in C. reinhardtii and can be used for future development of algal biotechnology.


Asunto(s)
Sistemas CRISPR-Cas , Chlamydomonas , Sistemas CRISPR-Cas/genética , Chlamydomonas/genética , Chlamydomonas/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Marcación de Gen/métodos , Edición Génica/métodos , Reparación del ADN por Unión de Extremidades , ADN Polimerasa theta
15.
Commun Biol ; 4(1): 235, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623126

RESUMEN

Channelrhodopsins (ChRs) are light-gated ion channels extensively applied as optogenetics tools for manipulating neuronal activity. All currently known ChRs comprise a large cytoplasmic domain, whose function is elusive. Here, we report the cation channel properties of KnChR, one of the photoreceptors from a filamentous terrestrial alga Klebsormidium nitens, and demonstrate that the cytoplasmic domain of KnChR modulates the ion channel properties. KnChR is constituted of a 7-transmembrane domain forming a channel pore, followed by a C-terminus moiety encoding a peptidoglycan binding domain (FimV). Notably, the channel closure rate was affected by the C-terminus moiety. Truncation of the moiety to various lengths prolonged the channel open lifetime by more than 10-fold. Two Arginine residues (R287 and R291) are crucial for altering the photocurrent kinetics. We propose that electrostatic interaction between the rhodopsin domain and the C-terminus domain accelerates the channel kinetics. Additionally, maximal sensitivity was exhibited at 430 and 460 nm, the former making KnChR one of the most blue-shifted ChRs characterized thus far, serving as a novel prototype for studying the molecular mechanism of color tuning of the ChRs. Furthermore, KnChR would expand the optogenetics tool kit, especially for dual light applications when short-wavelength excitation is required.


Asunto(s)
Channelrhodopsins/metabolismo , Chlorophyta/metabolismo , Activación del Canal Iónico , Secuencia de Aminoácidos , Animales , Línea Celular , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/efectos de la radiación , Chlorophyta/genética , Chlorophyta/efectos de la radiación , Activación del Canal Iónico/efectos de la radiación , Cinética , Luz , Potenciales de la Membrana , Ratones , Optogenética , Dominios Proteicos , Ratas , Relación Estructura-Actividad
16.
Biology (Basel) ; 10(2)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572760

RESUMEN

Mucociliary defense, mediated by the ciliated and goblet cells, is fundamental to respiratory fitness. The concerted action of ciliary movement on the respiratory epithelial surface and the pathogen entrapment function of mucus help to maintain healthy airways. Consequently, genetic or acquired defects in lung defense elicit respiratory diseases and secondary microbial infections that inflict damage on pulmonary function and may even be fatal. Individuals living with chronic and acute respiratory diseases are more susceptible to develop severe coronavirus disease-19 (COVID-19) illness and hence should be proficiently managed. In light of the prevailing pandemic, we review the current understanding of the respiratory system and its molecular components with a major focus on the pathophysiology arising due to collapsed respiratory epithelium integrity such as abnormal ciliary movement, cilia loss and dysfunction, ciliated cell destruction, and changes in mucus rheology. The review includes protein interaction networks of coronavirus infection-manifested implications on the molecular machinery that regulates mucociliary clearance. We also provide an insight into the alteration of the transcriptional networks of genes in the nasopharynx associated with the mucociliary clearance apparatus in humans upon infection by severe acute respiratory syndrome coronavirus-2.

17.
Int J Biol Macromol ; 171: 465-479, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33428952

RESUMEN

The ubiquitous nature of hemoglobins, their presence in multiple forms and low cellular expression in organisms suggests alternative physiological functions of hemoglobins in addition to oxygen transport and storage. Previous research has proposed enzymatic function of hemoglobins such as nitric oxide dioxygenase, nitrite reductase and hydroxylamine reductase. In all these enzymatic functions, active ferrous form of hemoglobin is converted to ferric form and reconversion of ferric to ferrous through reduction partners is under active investigation. The model alga C. reinhardtii contains multiple globins and is thus expected to have multiple putative methemoglobin reductases to augment the physiological functions of the novel hemoglobins. In this regard, three putative methemoglobin reductases and three algal hemoglobins were characterized. Our results signify that the identified putative methemoglobin reductases can reduce algal methemoglobins in a nonspecific manner under in vitro conditions. Enzyme kinetics of two putative methemoglobin reductases with methemoglobins as substrates and in silico analysis support interaction between the hemoglobins and the two reduction partners as also observed in vitro. Our investigation on algal methemoglobin reductases underpins the valuable chemistry of nitric oxide with the newly discovered hemoglobins to ensure their physiological relevance, with multiple hemoglobins probably necessitating the presence of multiple reductases.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Citocromo-B(5) Reductasa/fisiología , Oxigenasas/metabolismo , Proteínas de Plantas/fisiología , Hemoglobinas Truncadas/metabolismo , Técnicas de Química Analítica , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Secuencia Conservada , Citocromo-B(5) Reductasa/química , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/aislamiento & purificación , Humanos , Cinética , Metahemoglobina/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Proteínas de Plantas/aislamiento & purificación , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/aislamiento & purificación
18.
Curr Genomics ; 22(3): 181-213, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34975290

RESUMEN

Changes in environmental conditions like temperature and light critically influence crop production. To deal with these changes, plants possess various photoreceptors such as Phototropin (PHOT), Phytochrome (PHY), Cryptochrome (CRY), and UVR8 that work synergistically as sensor and stress sensing receptors to different external cues. PHOTs are capable of regulating several functions like growth and development, chloroplast relocation, thermomorphogenesis, metabolite accumulation, stomatal opening, and phototropism in plants. PHOT plays a pivotal role in overcoming the damage caused by excess light and other environmental stresses (heat, cold, and salinity) and biotic stress. The crosstalk between photoreceptors and phytohormones contributes to plant growth, seed germination, photo-protection, flowering, phototropism, and stomatal opening. Molecular genetic studies using gene targeting and synthetic biology approaches have revealed the potential role of different photoreceptor genes in the manipulation of various beneficial agronomic traits. Overexpression of PHOT2 in Fragaria ananassa leads to the increase in anthocyanin content in its leaves and fruits. Artificial illumination with blue light alone and in combination with red light influence the growth, yield, and secondary metabolite production in many plants, while in algal species, it affects growth, chlorophyll content, lipid production and also increases its bioremediation efficiency. Artificial illumination alters the morphological, developmental, and physiological characteristics of agronomic crops and algal species. This review focuses on PHOT modulated signalosome and artificial illumination-based photo-biotechnological approaches for the development of climate-smart crops.

19.
Life (Basel) ; 10(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126644

RESUMEN

Light-gated ion channel and ion pump rhodopsins are widely used as optogenetic tools and these can control the electrically excitable cells as (1) they are a single-component system i.e., their light sensing and ion-conducting functions are encoded by the 7-transmembrane domains and, (2) they show fast kinetics with small dark-thermal recovery time. In cellular signaling, a signal receptor, modulator, and the effector components are involved in attaining synchronous regulation of signaling. Optical modulation of the multicomponent network requires either receptor to effector encoded in a single ORF or direct modulation of the effector domain through bypassing all upstream players. Recently discovered modular rhodopsins like rhodopsin guanylate cyclase (RhoGC) and rhodopsin phosphodiesterase (RhoPDE) paves the way to establish a proof of concept for utilization of complex rhodopsin (modular rhodopsin) for optogenetic applications. Light sensor coupled modular system could be expressed in any cell type and hence holds great potential in the advancement of optogenetics 2.0 which would enable manipulating the entire relevant cell signaling system. Here, we had identified 50 novel modular rhodopsins with variant domains and their diverse cognate signaling cascades encoded in a single ORF, which are associated with specialized functions in the cells. These novel modular algal rhodopsins have been characterized based on their sequence and structural homology with previously reported rhodopsins. The presented novel modular rhodopsins with various effector domains leverage the potential to expand the optogenetic tool kit to regulate various cellular signaling pathways across the diverse biological model systems.

20.
Viruses ; 12(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825063

RESUMEN

COVID-19 novel coronavirus (CoV) disease caused by severe acquired respiratory syndrome (SARS)-CoV-2 manifests severe lethal respiratory illness in humans and has recently developed into a worldwide pandemic. The lack of effective treatment strategy and vaccines against the SARS-CoV-2 poses a threat to human health. An extremely high infection rate and multi-organ secondary infection within a short period of time makes this virus more deadly and challenging for therapeutic interventions. Despite high sequence similarity and utilization of common host-cell receptor, human angiotensin-converting enzyme-2 (ACE2) for virus entry, SARS-CoV-2 is much more infectious than SARS-CoV. Structure-based sequence comparison of the N-terminal domain (NTD) of the spike protein of Middle East respiratory syndrome (MERS)-CoV, SARS-CoV, and SARS-CoV-2 illustrate three divergent loop regions in SARS-CoV-2, which is reminiscent of MERS-CoV sialoside binding pockets. Comparative binding analysis with host sialosides revealed conformational flexibility of SARS-CoV-2 divergent loop regions to accommodate diverse glycan-rich sialosides. These key differences with SARS-CoV and similarity with MERS-CoV suggest an evolutionary adaptation of SARS-CoV-2 spike glycoprotein reciprocal interaction with host surface sialosides to infect host cells with wide tissue tropism.


Asunto(s)
Betacoronavirus/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Ácidos Siálicos/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Amino Azúcares/metabolismo , Betacoronavirus/fisiología , Sitios de Unión , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ácido N-Acetilneuramínico/metabolismo , Unión Proteica , Dominios Proteicos , Receptores de Coronavirus , Receptores Virales/química , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2 , Antígeno Sialil Lewis X/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tropismo Viral , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...