Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arh Hig Rada Toksikol ; 74(3): 198-206, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791673

RESUMEN

Clinical treatment with the antineoplastic drug irinotecan (IRI) is often hindered by side effects that significantly reduce the quality of life of treated patients. Due to the growing public support for products with Δ9-tetrahydrocannabinol (THC), even though relevant scientific literature does not provide clear evidence of their high antitumour potential, some cancer patients take unregistered preparations containing up to 80 % THC. This study was conducted on a syngeneic colorectal cancer mouse model to test the efficiency and safety of concomitant treatment with IRI and THC. Male BALB/c mice subcutaneously injected with CT26 cells were receiving 60 mg/kg of IRI intraperitoneally on day 1 and 5 of treatment and/or 7 mg/kg of THC by gavage a day for 7 days. Treatment responses were evaluated based on changes in body, brain, and liver weight, tumour growth, blood cholinesterase activity, and oxidative stress parameters. Irinotecan's systemic toxicity was evidenced by weight loss and high oxidative stress. The important finding of this study is that combining THC with IRI diminishes IRI efficiency in inhibiting tumour growth. However, further studies, focused on more subtle molecular methods in tumour tissue and analytical analysis of IRI and THC distribution in tumour-bearing mice, are needed to prove our observations.


Asunto(s)
Neoplasias del Colon , Calidad de Vida , Humanos , Masculino , Ratones , Animales , Irinotecán , Dronabinol , Neoplasias del Colon/tratamiento farmacológico , Biomarcadores
2.
Toxics ; 11(8)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37624219

RESUMEN

This study evaluates the interaction of toxic elements cadmium (Cd) and lead (Pb) due to exposure from cigarette smoking, essential elements, and steroidogenesis in the maternal-placental-fetal unit. In a cohort of 155 healthy, postpartum women with vaginal term deliveries in clinical hospitals in Zagreb, Croatia, samples of maternal blood/serum and urine, placental tissue, and umbilical cord blood/serum were collected at childbirth. The biomarkers determined were concentrations of Cd, Pb, iron (Fe), zinc (Zn), copper (Cu), and selenium (Se), and steroid hormones progesterone and estradiol in maternal and umbilical cord blood and the placenta. Three study groups were designated based on self-reported data on cigarette smoking habits and confirmed by urine cotinine levels: never smokers (n = 71), former smokers (n = 48), and active smokers (n = 36). Metal(loid)s, steroid hormones, urine cotinine, and creatinine levels were analyzed by ICP-MS, ELISA, GC-MS, and spectrophotometry. Cigarette smoking during pregnancy was associated with increased Cd levels in maternal, placental, and fetal compartments, Pb in the placenta, and with decreased Fe in the placenta. In active smokers, decreased progesterone and estradiol concentrations in cord blood serum were found, while sex steroid hormones did not change in either maternal serum or placenta. This study provides further evidence regarding toxic and essential metal(loid) interactions during prenatal life, and new data on sex steroid disruption in cord serum related to cigarette smoking. The results indicate that umbilical cord sex steroid levels may be a putative early marker of developmental origins of the future burden of disease related to harmful prenatal exposure to cigarette smoke.

3.
Toxics ; 10(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36548550

RESUMEN

To contribute new information to the pyrethroid pesticide α-cypermethrin toxicity profile, we evaluated its effects after oral administration to Wistar rats at daily doses of 2.186, 0.015, 0.157, and 0.786 mg/kg bw for 28 days. Evaluations were performed using markers of oxidative stress, cholinesterase (ChE) activities, and levels of primary DNA damage in plasma/whole blood and liver, kidney, and brain tissue. Consecutive exposure to α-cypermethrin affected the kidney, liver, and brain weight of rats. A significant increase in concentration of the thiobarbituric acid reactive species was observed in the brain, accompanied by a significant increase in glutathione peroxidase (GPx) activity. An increase in GPx activity was also observed in the liver of all α-cypermethrin-treated groups, while GPx activity in the blood was significantly lower than in controls. A decrease in ChE activities was observed in the kidney and liver. Treatment with α-cypermethrin induced DNA damage in the studied cell types at almost all of the applied doses, indicating the highest susceptibility in the brain. The present study showed that, even at very low doses, exposure to α-cypermethrin exerts genotoxic effects and sets in motion the antioxidative mechanisms of cell defense, indicating the potential hazards posed by this insecticide.

4.
Arh Hig Rada Toksikol ; 73(3): 223-232, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36226822

RESUMEN

The aim of this study was to investigate the genotoxic potential of low doses of chlorpyrifos (CPF) on blood and bone marrow cells in adult male Wistar rats. CPF was administered by oral gavage at daily doses of 0.010, 0.015, and 0.160 mg/kg of body weight (bw) for 28 consecutive days. Positive control (PC) was administered 300 mg/kg bw/day of ethyl methane sulphonate (EMS) for the final three days of the experiment. Toxic outcomes of exposure were determined with the in vivo micronucleus (MN) assay and alkaline comet assay. The 28-day exposure to the 0.015 mg/kg CPF dose, which was three times higher than the current value of acute reference dose (ARfD), reduced body weight gain in rats the most. The in vivo MN assay showed significant differences in number of reticulocytes per 1000 erythrocytes between PC and negative control (NC) and between all control groups and the groups exposed to 0.015 and 0.160 mg/kg bw/day of CPF. The number of micronucleated polychromatic erythrocytes per 2000 erythrocytes was significantly higher in the PC than the NC group or group exposed to 0.015 mg/kg bw/day of CPF. CPF treatment did not significantly increase primary DNA damage in bone marrow cells compared to the NC group. However, the damage in bone marrow cells of CPF-exposed rats was much higher than the one recorded in leukocytes, established in the previous research. Both assays proved to be successful for the assessment of CPFinduced genome instability in Wistar rats. However, the exact mechanisms of damage have to be further investigated and confirmed by other, more sensitive methods.


Asunto(s)
Cloropirifos , Animales , Peso Corporal , Células de la Médula Ósea , Cloropirifos/toxicidad , Ensayo Cometa/métodos , Daño del ADN , Masculino , Metano , Pruebas de Micronúcleos/métodos , Ratas , Ratas Wistar
5.
Toxicology ; 463: 152983, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34627991

RESUMEN

This paper assessed the potential of trans-placental and -lactational genotoxicity and oxidative stress induction of tembotrione, a naturally derived allelopathic herbicide. Several treatment protocols were applied to measure primary DNA damage by alkaline comet assay in leucocytes and liver. To address the oxidative stress induction, TBARS, ROS, SOD, CA, GSH-Px activity were recorded. The dams were treated from the first gestation day and pups sacrificed after birth. The second treatment protocol comprised treating the dams during gestation and lactation and sacrificing the pups at weaning. The third group of pups comprised offspring of dams that were treated in gestation and lactation and sacrificed in puberty. To address translactational genotoxicity, dams were treated in lactation only. Dams treated in gestation and lactation were sacrificed after reentering the estrous cycle and analyzed for DNA damage and oxidative stress. Tembotrione doses encountered in everyday human exposure, as estimated by the EFSA, were applied in dam treatment in consecutive days (ADI: 0.0004 mg/kg b.w./day, AOEL: 0.0007 mg/kg b.w./day, 1/500 LD50 4.0 mg/kg b.w./day). Although we observed mitigated DNA integrity at the dose of 4.0 mg/kg/b.w./day in female pubertal rats, we can conclude that at the conditions employed in the study low doses of tembotrione do not pose a risk for DNA damage of the offspring of treated dams. Contrary to this, the highest dose significantly affected all the oxidative stress parameters in the liver and plasma of pubertal females, CAT and GSH-Px in the liver of males and ROS and CAT of dams.


Asunto(s)
Ciclohexanonas/toxicidad , Daño del ADN/efectos de los fármacos , Herbicidas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Sulfonas/toxicidad , Animales , Ensayo Cometa , Ciclohexanonas/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Herbicidas/administración & dosificación , Lactancia , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Placenta/metabolismo , Embarazo , Ratas , Ratas Wistar , Sulfonas/administración & dosificación
6.
Chem Biol Interact ; 338: 109287, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129804

RESUMEN

Imidacloprid is a neonicotinoid insecticide that acts selectively as an agonist on insect nicotinic acetylcholine receptors. It is used for crop protection worldwide, as well as for non-agricultural uses. Imidacloprid systemic accumulation in food is an important source of imidacloprid exposure. Due to the undisputable need for investigations of imidacloprid toxicity in non-target species, we evaluated the effects of a 28-day oral exposure to low doses of imidacloprid (0.06 mg/kg b. w./day, 0.8 mg/kg b. w./day and 2.25 mg/kg b. w./day) on cholinesterase activity, oxidative stress responses and primary DNA damage in the blood and brain tissue of male Wistar rats. Exposure to imidacloprid did not cause significant changes in total cholinesterase, acetylcholinesterase and butyrylcholinesterase activities in plasma and brain tissue. Reactive oxygen species levels and lipid peroxidation increased significantly in the plasma of rats treated with the lowest dose of imidacloprid. Activities of glutathione-peroxidase in plasma and brain and superoxide dismutase in erythrocytes increased significantly at the highest applied dose. High performance liquid chromatography with UV diode array detector revealed the presence of imidacloprid in the plasma of all the treated animals and in the brain of the animals treated with the two higher doses. The alkaline comet assay results showed significant peripheral blood leukocyte damage at the lowest dose of imidacloprid and dose-dependent brain cell DNA damage. Oral 28-day exposure to low doses of imidacloprid in rats resulted in detectable levels of imidacloprid in plasma and brain tissue that directly induced DNA damage, particularly in brain tissue, with slight changes in plasma oxidative stress parameters.


Asunto(s)
Acetilcolinesterasa/sangre , Encéfalo/enzimología , Encéfalo/patología , Butirilcolinesterasa/sangre , Daño del ADN , Neonicotinoides/administración & dosificación , Nitrocompuestos/administración & dosificación , Estrés Oxidativo , Acetilcolinesterasa/metabolismo , Administración Oral , Animales , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Butirilcolinesterasa/metabolismo , Catalasa/metabolismo , Ensayo Cometa , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
7.
Clin Drug Investig ; 40(9): 775-787, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32696321

RESUMEN

This review proposes the hypothesis that the effectiveness of irinotecan chemotherapy might be impaired by high doses of concomitantly administered Δ9-tetrahydrocannabinol (THC). The most important features shared by irinotecan and THC, which might represent sources of potentially harmful interactions are: first-pass hepatic metabolism mediated by cytochrome P450 (CYP) enzyme CYP3A4; glucuronidation mediated by uridine diphosphate glycosyltransferase (UGT) enzymes, isoforms 1A1 and 1A9; transport of parent compounds and their metabolites via canalicular ATP-binding cassette (ABC) transporters ABCB1 and ABCG2; enterohepatic recirculation of both parent compounds, which leads to an extended duration of their pharmacological effects; possible competition for binding to albumin; butyrylcholinesterase (BChE) inhibition by THC, which might impair the conversion of parent irinotecan into the SN-38 metabolite; mutual effects on mitochondrial dysfunction and induction of oxidative stress; potentiation of hepatotoxicity; potentiation of genotoxicity and cytogenetic effects leading to genome instability; possible neurotoxicity; and effects on bilirubin. The controversies associated with the use of highly concentrated THC preparations with irinotecan chemotherapy are also discussed. Despite all of the limitations, the body of evidence provided here could be considered relevant for human-risk assessments and calls for concern in cases when irinotecan chemotherapy is accompanied by preparations rich in THC.


Asunto(s)
Antineoplásicos/uso terapéutico , Dronabinol/administración & dosificación , Irinotecán/uso terapéutico , Inhibidores de Topoisomerasa I/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/efectos de los fármacos , Citocromo P-450 CYP3A/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Humanos
8.
Chemosphere ; 253: 126643, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32278190

RESUMEN

Tembotrione is a rather novel pesticide, usually used for post-emergence weed control. Even though its use is rapidly growing, it is not followed by an adequate flow of scientific evidence regarding its toxicity towards non-target organisms. We evaluated the potential of low doses of tembotrione to induce oxidative stress and cytogenetic damage in blood and brain cells of adult male Wistar rats. Parameters of lipid peroxidation, glutathione levels, activities of antioxidant enzymes and primary DNA damage were assessed following 28-day repeated oral exposure to doses comparable with the currently proposed health-based reference values. The results of the alkaline comet assay showed that such low doses of tembotrione have the potency to inflict primary DNA damage in both peripheral blood leukocytes and brain of treated rats, even with only slight changes in the oxidative biomarker levels. The DNA damage in blood and brain cells of Wistar rats significantly increased at all applied doses, suggesting that tembotrione genotoxicity is mainly a result of direct interaction with DNA while the induction of oxidative stress responses contributes to DNA instability in a lesser extent. The findings of the present study call for further research using other sensitive biomarkers of effect and different exposure scenarios.


Asunto(s)
Ciclohexanonas/toxicidad , Daño del ADN/fisiología , Herbicidas/toxicidad , Sulfonas/toxicidad , Animales , Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Ensayo Cometa , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Pruebas de Toxicidad
9.
Arh Hig Rada Toksikol ; 70(4): 325-331, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32623866

RESUMEN

In order to evaluate the effect of irinotecan (IRI) on urinary elimination of delta-9-tetrahydrocannabinol (THC) in a rat experimental model, we developed an analytical method for the determination of the mass concentration of THC and its metabolites [11-hydroxy-delta-9-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH)] in the urine of rats treated only with THC and treated simultaneously with THC and irinotecan. For this purpose, hydrolysis and solid phase extraction conditions of the investigated analytes were optimised and a gas chromatography-mass spectrometry (GC-MS) method was developed to determine all three analytes in rat urine. The most effective hydrolysis method for THC, THC-OH, and THC-COOH conjugates was so-called tandem hydrolysis by the ß-glucuronidase enzyme from Escherichia coli at 50 °C for 2 hours and followed by alkaline hydrolysis. The proposed method was then applied for determining concentrations of analytes in 24-hour rat urine. THC was not detected in either sample, THC-OH was detected in 50 % of samples, and THC-COOH in all of the samples. Enhanced urinary THC-COOH excretion was noted in rats administered combined treatment compared to single THC treatment. The method described herein was suitable for determining the mass concentration of THC metabolites in the rat urine due to its sensitivity (detection limits: 0.8-1.0 µg/L), accuracy (>96 %), and precision (RSD <6 %).


Asunto(s)
Dronabinol/análogos & derivados , Dronabinol/metabolismo , Dronabinol/orina , Cromatografía de Gases y Espectrometría de Masas/métodos , Irinotecán/orina , Extracción en Fase Sólida/métodos , Inhibidores de Topoisomerasa I/orina , Animales , Masculino , Ratas
10.
Carbohydr Res ; 343(14): 2475-80, 2008 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-18656854

RESUMEN

The site specificity, extent, and nature of modification of the tetrapeptide, Leu-Ser-Lys-Leu (1), incubated with d-glucose or d-fructose in methanol, or in phosphate buffer of pH 5.7, 7.4, and 8.0 were investigated. The generated mono- and di-glycated Amadori (1-deoxy-d-fructosyl derivatives) and Heyns rearrangement products (N-alkylated glucosamine/mannosamine derivatives) were isolated and characterized by NMR and mass spectrometry. The results identified the epsilon-amino group of the Lys residue as the preferential glycation site in tetrapeptide 1. Under all conditions investigated, glucose afforded higher yields of glycation products than fructose. In the reactions carried out in buffer, glycation at pH 7.4 and 8.0 was much faster than at pH 5.7.


Asunto(s)
Fructosa/metabolismo , Glucosa/metabolismo , Productos Finales de Glicación Avanzada/síntesis química , Lisina/metabolismo , Péptidos/metabolismo , Secuencia de Carbohidratos , Cromatografía Líquida de Alta Presión , Fructosa/química , Glucosa/química , Productos Finales de Glicación Avanzada/química , Glicosilación , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Péptidos/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...