Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ambio ; 51(2): 318-332, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34822116

RESUMEN

Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air-sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.


Asunto(s)
Cubierta de Hielo , Microbiota , Regiones Árticas , Cambio Climático , Ecosistema , Cubierta de Hielo/microbiología
2.
Ambio ; 51(2): 307-317, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34822117

RESUMEN

The Arctic marine ecosystem is shaped by the seasonality of the solar cycle, spanning from 24-h light at the sea surface in summer to 24-h darkness in winter. The amount of light available for under-ice ecosystems is the result of different physical and biological processes that affect its path through atmosphere, snow, sea ice and water. In this article, we review the present state of knowledge of the abiotic (clouds, sea ice, snow, suspended matter) and biotic (sea ice algae and phytoplankton) controls on the underwater light field. We focus on how the available light affects the seasonal cycle of primary production (sympagic and pelagic) and discuss the sensitivity of ecosystems to changes in the light field based on model simulations. Lastly, we discuss predicted future changes in under-ice light as a consequence of climate change and their potential ecological implications, with the aim of providing a guide for future research.


Asunto(s)
Ecosistema , Cubierta de Hielo , Regiones Árticas , Océanos y Mares , Fitoplancton
3.
Environ Int ; 139: 105697, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32334123

RESUMEN

High concentrations of microplastics have been found in sea ice but the mechanisms by which they get captured into the ice and which role ice algae might play in this process remain unknown. Similarly, we do not know how the presence of microplastics might impact the colonization of sea ice by ice algae. To estimate the ecological impact of microplastics for Polar ecosystems, it is essential to understand their behaviour during ice formation and possible interactions with organisms inhabiting sea ice. In this study we tested the interaction between the ice algae Fragillariopsis cylindrus and microplastic beads with and without sea ice present and, in a third experiment, during the process of ice formation. With sea ice present, we found significantly less algae cells in the ice when incubated together with microplastics compared to the incubation without microplastics. However, during ice formation, the presence of microplastics did not impact the colonisation of the ice by F. cylindrus cells. Further, we observed a strong correlation between salinity and the relative amount of beads in the water and ice. With increasing salinity of the water, the relative amount of beads in the water decreased significantly. At the same time, the relative amount of beads in the ice increased significantly with increasing ice salinity. Both processes were not influenced by the presence of F. cylindrus. Also, we found indications that the presence of algae can affect the amount of microplastic beads sticking to the container walls. This could indicate that EPS produced by ice algae plays a significant role in surface binding properties of microplastics. Overall, our results highlight that the interactions between algae and microplastics have an influence on the uptake of microplastics into sea ice with possible implications for the sea ice food web.


Asunto(s)
Cubierta de Hielo , Contaminantes Químicos del Agua , Ecosistema , Microplásticos , Plásticos , Salinidad , Contaminantes Químicos del Agua/análisis
4.
Nat Commun ; 9(1): 1505, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29692405

RESUMEN

Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.

5.
Polar Biol ; 38(5): 719-731, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26257467

RESUMEN

The sea ice cover of the Arctic Ocean has changed dramatically in the last decades, and the resulting consequences for the sea-ice-associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice are of great importance for the ice-associated ecosystem and the pelagic-benthic coupling. However, the frequency and distribution of their occurrence is not well quantified. During the IceArc expedition (ARK-27/3) of RV Polarstern in late summer 2012, we observed different types of algal aggregates floating underneath various ice types in the Central Arctic basins. We investigated the spatial distribution of ice algal aggregates and quantified their biomass, using under-ice image surveys obtained by an upward-looking camera on a remotely operated vehicle. On basin scale, filamentous aggregates of Melosira arctica are more frequently found in the inner part of the Central Arctic pack ice, while rounded aggregates mainly formed by pennate diatoms are found closer to the ice edge, under melting sea ice. On the scale of an ice floe, the distribution of algal aggregates in late summer is mainly regulated by the topography of the ice underside, with aggregates accumulating in dome-shaped structures and at the edges of pressure ridges. The average biomass of the aggregates from our sites and season was 0.1-6.0 mg C m-2. However, depending on the approach used, differences in orders of magnitude for biomass estimates may occur. This highlights the difficulties of upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.

6.
J Geophys Res Oceans ; 120(9): 5932-5944, 2015 09.
Artículo en Inglés | MEDLINE | ID: mdl-27660738

RESUMEN

The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

7.
J Geophys Res Oceans ; 120(9): 6508-6541, 2015 09.
Artículo en Inglés | MEDLINE | ID: mdl-27668139

RESUMEN

We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters.

8.
PLoS One ; 8(10): e76599, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204642

RESUMEN

During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.


Asunto(s)
Cianobacterias , Congelación , Cubierta de Hielo/microbiología , Hielo , Agua de Mar/microbiología , Regiones Árticas , Ecosistema , Geografía
9.
Science ; 339(6126): 1430-2, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23413190

RESUMEN

In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.


Asunto(s)
Biomasa , Diatomeas , Ecosistema , Cubierta de Hielo , Agua de Mar , Animales , Regiones Árticas , Biodiversidad , Ciclo del Carbono , Cambio Climático , Diatomeas/citología , Diatomeas/crecimiento & desarrollo , Congelación , Sedimentos Geológicos , Pepinos de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...