Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Commun ; 15(1): 1622, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438343

RESUMEN

Alveologenesis is a spatially coordinated morphogenetic event, during which alveolar myofibroblasts surround the terminal sacs constructed by epithelial cells and endothelial cells (ECs), then contract to form secondary septa to generate alveoli in the lungs. Recent studies have demonstrated the important role of alveolar ECs in this morphogenetic event. However, the mechanisms underlying EC-mediated alveologenesis remain unknown. Herein, we show that ECs regulate alveologenesis by constructing basement membranes (BMs) acting as a scaffold for myofibroblasts to induce septa formation through activating mechanical signaling. Rap1, a small GTPase of the Ras superfamily, is known to stimulate integrin-mediated cell adhesions. EC-specific Rap1-deficient (Rap1iECKO) mice exhibit impaired septa formation and hypo-alveolarization due to the decreased mechanical signaling in myofibroblasts. In Rap1iECKO mice, ECs fail to stimulate integrin ß1 to recruit Collagen type IV (Col-4) into BMs required for myofibroblast-mediated septa formation. Consistently, EC-specific integrin ß1-deficient mice show hypo-alveolarization, defective mechanical signaling in myofibroblasts, and disorganized BMs. These data demonstrate that alveolar ECs promote integrin ß1-mediated Col-4 recruitment in a Rap1-dependent manner, thereby constructing BMs acting as a scaffold for myofibroblasts to induce mechanical signal-mediated alveologenesis. Thus, this study unveils a mechanism of organ morphogenesis mediated by ECs through intrinsic functions.


Asunto(s)
Células Endoteliales , Miofibroblastos , Animales , Ratones , Membrana Basal , Integrina beta1/genética , Morfogénesis
2.
STAR Protoc ; 5(1): 102892, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38363686

RESUMEN

Extracellular vesicles (EVs) are complex structures that transport various DNA, RNA, and protein. Recently, new EV secretion mechanisms have been identified through the iron regulatory system in mammalian cells. We revealed that ferroptosis increases EV secretion, which is named ferroptosis-dependent EVs (FedEVs). Here, we describe a step-by-step procedure to isolate GFP-expressing FedEVs for in vitro analysis. The FedEVs are further analyzed by imaging and flow cytometry analysis. For complete details on the use and execution of this protocol, please refer to Ito et al.1.


Asunto(s)
Vesículas Extracelulares , Ferroptosis , Animales , Ferroptosis/genética , Proteínas/metabolismo , Técnicas de Cultivo de Célula , Vesículas Extracelulares/química , Mamíferos
3.
J Pathol ; 262(1): 61-75, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37796386

RESUMEN

Pancreatic stellate cells (PSCs) are stromal cells in the pancreas that play an important role in pancreatic pathology. In chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC), PSCs are known to get activated to form myofibroblasts or cancer-associated fibroblasts (CAFs) that promote stromal fibroinflammatory reactions. However, previous studies on PSCs were mainly based on the findings obtained using ex vivo expanded PSCs, with few studies that addressed the significance of in situ tissue-resident PSCs using animal models. Their contributions to fibrotic reactions in CP and PDAC are also lesser-known. These limitations in our understanding of PSC biology have been attributed to the lack of specific molecular markers of PSCs. Herein, we established Meflin (Islr), a glycosylphosphatidylinositol-anchored membrane protein, as a PSC-specific marker in both mouse and human by using human pancreatic tissue samples and Meflin reporter mice. Meflin-positive (Meflin+ ) cells contain lipid droplets and express the conventional PSC marker Desmin in normal mouse pancreas, with some cells also positive for Gli1, the marker of pancreatic tissue-resident fibroblasts. Three-dimensional analysis of the cleared pancreas of Meflin reporter mice showed that Meflin+ PSCs have long and thin cytoplasmic protrusions, and are localised on the abluminal side of vessels in the normal pancreas. Lineage tracing experiments revealed that Meflin+ PSCs constitute one of the origins of fibroblasts and CAFs in CP and PDAC, respectively. In these diseases, Meflin+ PSC-derived fibroblasts showed a distinctive morphology and distribution from Meflin+ PSCs in the normal pancreas. Furthermore, we showed that the genetic depletion of Meflin+ PSCs accelerated fibrosis and attenuated epithelial regeneration and stromal R-spondin 3 expression, thereby implying that Meflin+ PSCs and their lineage cells may support tissue recovery and Wnt/R-spondin signalling after pancreatic injury and PDAC development. Together, these data indicate that Meflin may be a marker specific to tissue-resident PSCs and useful for studying their biology in both health and disease. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis Crónica , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Fibrosis , Páncreas/patología , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/patología , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología , Regeneración
4.
Nat Commun ; 14(1): 4675, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542026

RESUMEN

To maintain and restore skeletal muscle mass and function is essential for healthy aging. We have found that myonectin acts as a cardioprotective myokine. Here, we investigate the effect of myonectin on skeletal muscle atrophy in various male mouse models of muscle dysfunction. Disruption of myonectin exacerbates skeletal muscle atrophy in age-associated, sciatic denervation-induced or dexamethasone (DEX)-induced muscle atrophy models. Myonectin deficiency also contributes to exacerbated mitochondrial dysfunction and reduces expression of mitochondrial biogenesis-associated genes including PGC1α in denervated muscle. Myonectin supplementation attenuates denervation-induced muscle atrophy via activation of AMPK. Myonectin also reverses DEX-induced atrophy of cultured myotubes through the AMPK/PGC1α signaling. Furthermore, myonectin treatment suppresses muscle atrophy in senescence-accelerated mouse prone (SAMP) 8 mouse model of accelerated aging or mdx mouse model of Duchenne muscular dystrophy. These data indicate that myonectin can ameliorate skeletal muscle dysfunction through AMPK/PGC1α-dependent mechanisms, suggesting that myonectin could represent a therapeutic target of muscle atrophy.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Músculo Esquelético , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Atrofia Muscular/prevención & control , Atrofia Muscular/inducido químicamente , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
5.
BMC Cancer ; 23(1): 487, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254056

RESUMEN

Organoids are a three-dimensional (3D) culture system that simulate actual organs. Therefore, tumor organoids are expected to predict precise response to chemotherapy in patients. However, to date, few studies have studied the drug responses in organoids of malignant mesothelioma (MM). The poor prognosis of MM emphasizes the importance of establishing a protocol for generating MM-organoid for research and clinical use. Here, we established murine MM organoids from p53+/- or wild-type C57BL/6 strain by intraperitoneal injection either with crocidolite or carbon nanotube. Established MM-organoids proliferated in Matrigel as spheroids. Subcutaneous injection assays revealed that the MM-organoids mimicked actual tissue architecture and maintained the original histological features of the primary MM. RNA sequencing and pathway analyses revealed that the significant expressional differences between the 2D- and 3D-culture systems were observed in receptor tyrosine kinases, including IGF1R and EGFR, glycosylation and cholesterol/steroid metabolism. MM-organoids exhibited a more sensitive response to cisplatin through stable plasma membrane localization of a major cisplatin transporter, copper transporter 1/Slc31A1 (Ctr1) in comparison to 2D-cultures, presumably through glycosylation and lipidation. The Matrigel culture system facilitated the localization of CTR1 on the plasma membrane, which simulated the original MMs and the subcutaneous xenografts. These results suggest that the newly developed protocol for MM-organoids is useful to study strategies to overcome chemotherapy resistance to cisplatin.


Asunto(s)
Cisplatino , Transportador de Cobre 1 , Mesotelioma Maligno , Animales , Humanos , Ratones , Cisplatino/farmacología , Colágeno/metabolismo , Mesotelioma Maligno/metabolismo , Organoides/patología , Transportador de Cobre 1/metabolismo
6.
iScience ; 25(7): 104651, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35811849

RESUMEN

It is widely accepted that adipose-derived regenerative cells (ADRCs) can differentiate into mesodermal lineage cells. However, reprogramming adult ADRCs into mature cardiomyocytes is challenging. We investigated the induction of myocardial differentiation in ADRCs via direct reprogramming using lentiviral gene transfer. First, we identified candidate transcriptional factors by performing RNA sequencing and ultimately confirmed that the combination of six unique factors (Baf60c, Gata4, Gata6, Klf15, Mef2a, and Myocd) could efficiently express enhanced green fluorescent protein (GFP) in ADRCs isolated from adult alpha-myosin heavy chain promoter-driven GFP transgenic mice. The GFP-positive ADRCs induced by six factors (6F-ADRCs) expressed multiple cardiac genes and revealed cardiac differentiation in bioinformatic analysis. Moreover, injection of 6F-ADRCs into acute myocardial infarcted tissues in vivo resulted in the improvement of survival rate, fractional shortening, and reduction of infarction scar area. This study provides an alternative method for direct reprogramming of adult ADRCs into cardiomyocytes.

7.
Elife ; 112022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119364

RESUMEN

Declining bone mass is associated with aging and osteoporosis, a disease characterized by progressive weakening of the skeleton and increased fracture incidence. Growth and lifelong homeostasis of bone rely on interactions between different cell types including vascular cells and mesenchymal stromal cells (MSCs). As these interactions involve Notch signaling, we have explored whether treatment with secreted Notch ligand proteins can enhance osteogenesis in adult mice. We show that a bone-targeting, high affinity version of the ligand Delta-like 4, termed Dll4(E12), induces bone formation in male mice without causing adverse effects in other organs, which are known to rely on intact Notch signaling. Due to lower bone surface and thereby reduced retention of Dll4(E12), the same approach failed to promote osteogenesis in female and ovariectomized mice but strongly enhanced trabecular bone formation in combination with parathyroid hormone. Single cell analysis of stromal cells indicates that Dll4(E12) primarily acts on MSCs and has comparably minor effects on osteoblasts, endothelial cells, or chondrocytes. We propose that activation of Notch signaling by bone-targeted fusion proteins might be therapeutically useful and can avoid detrimental effects in Notch-dependent processes in other organs.


Asunto(s)
Osteogénesis , Osteoporosis/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Huesos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Condrocitos/metabolismo , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Transducción de Señal
8.
Cardiovasc Res ; 118(6): 1597-1610, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34051089

RESUMEN

AIMS: Abdominal aortic aneurysm (AAA) is an increasing and life-threatening disease. Obesity contributes to an increased risk of AAA. Omentin is a circulating adipokine, which is downregulated in obese complications. Here, we examined whether omentin could modulate angiotensin (Ang) II-induced AAA formation in apolipoprotein E-knockout (apoE-KO) mice. METHODS AND RESULTS: apoE-KO mice were crossed with transgenic mice expressing the human omentin gene in fat tissue (OMT-Tg mice) to generate apoE-KO/OMT-Tg mice. apoE-KO/OMT-Tg and apoE-KO mice were subjected to continuous Ang II infusion by using osmotic mini pumps. apoE-KO/OMT-Tg mice exhibited a lower incidence of AAA formation and a reduced maximal diameter of AAA compared with apoE-KO mice. apoE-KO/OMT-Tg mice showed attenuated disruption of medial elastic fibres in response to Ang II compared with apoE-KO mice. apoE-KO/OMT-Tg mice also displayed reduced expression levels of matrix metalloproteinase (MMP) 9, MMP2, and pro-inflammatory genes in aortic walls compared with apoE-KO mice. Furthermore, systemic administration of omentin also attenuated AAA formation and disruption of medial elastic fibres in response to Ang II in apoE-KO mice. Treatment of human monocyte-derived macrophages with omentin protein attenuated expression of MMP9 and pro-inflammatory mediators, and MMP9 activation after stimulation with lipopolysaccharide. Treatment of human vascular smooth muscle cells (VSMCs) with omentin protein reduced expression and activation of MMP2 after stimulation with tumour necrosis factor α. Omentin treatment increased phosphorylation levels of Akt in human macrophages and VSMCs. The suppressive effects of omentin on MMP9 and MMP2 expression were reversed by inhibition of integrin-αVß3/PI3-kinase/Akt signalling in macrophages and VSMCs, respectively. CONCLUSION: These data suggest that omentin acts as an adipokine that can attenuate Ang II-induced development of AAA through suppression of MMP9 and MMP2 expression and inflammatory response in the vascular wall.


Asunto(s)
Aneurisma de la Aorta Abdominal , Citocinas/metabolismo , Lectinas/metabolismo , Adipoquinas , Angiotensina II/metabolismo , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control , Apolipoproteínas E/genética , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt
9.
Biomed Pharmacother ; 146: 112566, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34954642

RESUMEN

BACKGROUND: G protein-coupled receptors (GPCRs) regulate the pathological and physiological functions of the heart. GPCR antagonists are widely used in the treatment of chronic heart failure. Despite therapeutic advances in the treatments for cardiovascular diseases, heart failure is a major clinical health problem, with significant mortality and morbidity. Corticotropin releasing hormone receptor 2 (CRHR2) is highly expressed in cardiomyocytes, and cardiomyocyte-specific deletion of the genes encoding CRHR2 suppresses pressure overload-induced cardiac dysfunction. This suggests that the negative modulation of CRHR2 may prevent the progression of heart failure. However, there are no systemic drugs against CRHR2. FINDINGS: We developed a novel, oral, small molecule antagonist of CRHR2, RQ-00490721, to investigate the inhibition of CRHR2 as a potential therapeutic approach for the treatment of heart failure. In vitro, RQ-00490721 decreased CRHR2 agonist-induced 3', 5'-cyclic adenosine monophosphate (cAMP) production. In vivo, RQ-00490721 showed sufficient oral absorption and better distribution to peripheral organs than to the central nervous system. Oral administration of RQ-00490721 inhibited the CRHR2 agonist-induced phosphorylation of cAMP-response element binding protein (CREB) in the heart, which regulates a transcription activator involved in heart failure. RQ-00490721 administration was not found to affect basal heart function in mice but protected them from pressure overload-induced cardiac dysfunction. INTERPRETATION: Our results suggest that RQ-00490721 is a promising agent for use in the treatment of chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca/patología , Miocitos Cardíacos/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Administración Oral , Animales , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
10.
Cells ; 10(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34943801

RESUMEN

Chronic hypoxia increases the resistance of pulmonary arteries by stimulating their contraction and augmenting their coverage by smooth muscle cells (SMCs). While these responses require adjustment of the vascular SMC transcriptome, regulatory elements are not well defined in this context. Here, we explored the functional role of the transcription factor nuclear factor of activated T-cells 5 (NFAT5/TonEBP) in the hypoxic lung. Regulatory functions of NFAT5 were investigated in cultured artery SMCs and lungs from control (Nfat5fl/fl) and SMC-specific Nfat5-deficient (Nfat5(SMC)-/-) mice. Exposure to hypoxia promoted the expression of genes associated with metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in Nfat5(SMC)-/- versus Nfat5fl/fl lungs. In vitro, hypoxia-exposed Nfat5-deficient pulmonary artery SMCs elevated the level of OXPHOS-related transcripts, mitochondrial respiration, and production of reactive oxygen species (ROS). Right ventricular functions were impaired while pulmonary right ventricular systolic pressure (RVSP) was amplified in hypoxia-exposed Nfat5(SMC)-/- versus Nfat5fl/fl mice. Scavenging of mitochondrial ROS normalized the raise in RVSP. Our findings suggest a critical role for NFAT5 as a suppressor of OXPHOS-associated gene expression, mitochondrial respiration, and ROS production in pulmonary artery SMCs that is vital to limit ROS-dependent arterial resistance in a hypoxic environment.


Asunto(s)
Hipoxia/patología , Pulmón/patología , Mitocondrias/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Resistencia Vascular , Animales , Presión Sanguínea , Electrocardiografía , Regulación de la Expresión Génica , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Metaboloma , Ratones , Miocitos del Músculo Liso/patología , Fosforilación Oxidativa , Consumo de Oxígeno , Transporte de Proteínas , Sístole , Factores de Transcripción/deficiencia , Resistencia Vascular/genética
11.
FASEB J ; 35(12): e22048, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34807469

RESUMEN

In the heart, fatty acid is a major energy substrate to fuel contraction under aerobic conditions. Ischemia downregulates fatty acid metabolism to adapt to the limited oxygen supply, making glucose the preferred substrate. However, the mechanism underlying the myocardial metabolic shift during ischemia remains unknown. Here, we show that lipoprotein lipase (LPL) expression in cardiomyocytes, a principal enzyme that converts triglycerides to free fatty acids and glycerol, increases during myocardial infarction (MI). Cardiomyocyte-specific LPL deficiency enhanced cardiac dysfunction and apoptosis following MI. Deficiency of aquaporin 7 (AQP7), a glycerol channel in cardiomyocytes, increased the myocardial infarct size and apoptosis in response to ischemia. Ischemic conditions activated glycerol-3-phosphate dehydrogenase 2 (GPD2), which converts glycerol-3-phosphate into dihydroxyacetone phosphate to facilitate adenosine triphosphate (ATP) synthesis from glycerol. Conversely, GPD2 deficiency exacerbated cardiac dysfunction after acute MI. Moreover, cardiomyocyte-specific LPL deficiency suppressed the effectiveness of peroxisome proliferator-activated receptor alpha (PPARα) agonist treatment for MI-induced cardiac dysfunction. These results suggest that LPL/AQP7/GPD2-mediated glycerol metabolism plays an important role in preventing myocardial ischemia-related damage.


Asunto(s)
Acuaporinas/metabolismo , Cardiomiopatías/prevención & control , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Hipoxia/fisiopatología , Isquemia/prevención & control , Lipoproteína Lipasa/fisiología , Proteínas Mitocondriales/metabolismo , Animales , Acuaporinas/genética , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Glicerolfosfato Deshidrogenasa/genética , Isquemia/etiología , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética
12.
Redox Biol ; 47: 102174, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34700146

RESUMEN

Asbestos-associated diseases remain a social burden worldwide. Our previous studies identified asbestos-induced iron-rich milieu for mesothelial cells with ceaseless macrophage ferroptosis. However, molecular mechanisms how this mutagenic milieu influences mesothelial cells have not been elucidated yet. Here, we propose a novel mechanism that extracellular vesicles (EVs) mediate asbestos-associated mutagenic factors to mesothelial cells. In a mice model of intraperitoneal crocidolite injection, mutagenic milieu highly expressed CD63, an exosomal marker. We then used a GFP-CD63 labeled THP-1 macrophage model exposed to crocidolite/iron, which generated EVs under ferroptotic process. We observed that MeT-5A mesothelial cells can receive and internalize these EVs. Furthermore, we comprehensively analyzed the ferroptosis-dependent EVs (FedEVs) for transported proteins and identified ferritin heavy/light chains as major components. Therefore, we inferred that FedEVs transport iron from ferroptotic macrophages to mesothelial cells. RNA sequencing revealed that the mesothelial cells receiving higher amounts of the FedEVs were mitotic, especially at the S and G2/M phases, by the use of Fucci mesothelial cells. Nuclear 8-hydroxy-2'-deoxyguanosine and γ-H2AX were significantly increased in the recipient mesothelial cells after exposure to FedEVs. Collectively, we here demonstrate a novel mechanism that FedEVs act as a key mutagenic mediator by transporting iron, which contribute to asbestos-induced mesothelial carcinogenesis.


Asunto(s)
Amianto , Vesículas Extracelulares , Ferroptosis , Animales , Amianto/toxicidad , Carcinogénesis , Ferritinas , Macrófagos , Ratones
13.
Nagoya J Med Sci ; 83(3): 465-476, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34552283

RESUMEN

Adipose-derived regenerative cells (ADRCs), mesenchymal stem/progenitor cells from subcutaneous adipose tissue, have been shown to stimulate angiogenesis in hind limb ischemia, an effect attributed to paracrine action on endothelial cells (ECs) in mice. Despite promising therapeutic effects, the relevant molecules promoting neovascularization in this setting have not been fully elucidated. Extracellular vesicles, crucial mediators of intercellular communication, are recognized as a new therapeutic modality for regenerative medicine. Here, we found that GW4869, an exosome biogenesis inhibitor targeting neutral sphingomyelinase, impaired ADRCs-mediated angiogenesis and improvement of blood perfusion in a murine hind limb ischemia model. In addition, while the supernatant of ADRCs induced murine EC migration, this effect was attenuated by pre-treatment with GW4869. RNA analysis revealed that treatment of ADRCs with GW4869 reduced the expression of microRNA-21 (miR-21), miR-27b, miR-322, and let-7i in ADRCs-derived exosomes. Furthermore, the exosomes derived from GW4869-treated ADRCs induced the expression of the miR-21 targets Smad7 and Pten, and the miR-322 target Cul2, in ECs. These findings suggest that several miRNAs in ADRCs-derived exosomes contribute to angiogenesis and improvement of blood perfusion in a murine hind limb ischemia model.


Asunto(s)
Isquemia , Tejido Adiposo , Animales , Células Endoteliales , Isquemia/terapia , Ratones , MicroARNs/genética , Neovascularización Patológica
14.
J Am Heart Assoc ; 10(16): e020896, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34348468

RESUMEN

Background Circadian rhythm disorders, often seen in modern lifestyles, are a major social health concern. The aim of this study was to examine whether circadian rhythm disorders would influence angiogenesis and blood perfusion recovery in a mouse model of hind limb ischemia. Methods and Results A jet-lag model was established in C57BL/6J mice using a light-controlled isolation box. Control mice were kept at a light/dark 12:12 (12-hour light and 12-hour dark) condition. Concentrations of plasma vascular endothelial growth factor and circulating endothelial progenitor cells in control mice formed a circadian rhythm, which was diminished in the jet-lag model (P<0.05). The jet-lag condition deteriorated tissue capillary formation (P<0.001) and tissue blood perfusion recovery (P<0.01) in hind limb ischemia, which was associated with downregulation of vascular endothelial growth factor expression in local ischemic tissue and in the plasma. Although the expression of clock genes (ie, Clock, Bmal1, and Cry) in local tissues was upregulated after ischemic injury, the expression levels of cryptochrome (Cry) 1 and Cry2 were inhibited by the jet-lag condition. Next, Cry1 and Cry2 double-knockout mice were examined for blood perfusion recoveries and a reparative angiogenesis. Cry1 and Cry2 double-knockout mice revealed suppressed capillary density (P<0.001) and suppressed tissue blood perfusion recovery (P<0.05) in the hind limb ischemia model. Moreover, knockdown of CRY1/2 in human umbilical vein endothelial cells was accompanied by increased expression of WEE1 and decreased expression of HOXC5. This was associated with decreased proliferative capacity, migration ability, and tube formation ability of human umbilical vein endothelial cells, respectively, leading to impairment of angiogenesis. Conclusions Our data suggest that circadian rhythm disorder deteriorates reparative ischemia-induced angiogenesis and that maintenance of circadian rhythm plays an important role in angiogenesis.


Asunto(s)
Ritmo Circadiano , Miembro Posterior/irrigación sanguínea , Isquemia/fisiopatología , Síndrome Jet Lag/fisiopatología , Neovascularización Fisiológica , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Criptocromos/genética , Criptocromos/metabolismo , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/sangre , Isquemia/complicaciones , Isquemia/genética , Síndrome Jet Lag/sangre , Síndrome Jet Lag/complicaciones , Síndrome Jet Lag/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Densidad Microvascular , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Flujo Sanguíneo Regional , Transducción de Señal , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/sangre
15.
Genes Cells ; 26(7): 495-512, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33960573

RESUMEN

Mesenchymal stem cells (MSCs) are the likely precursors of multiple lines of mesenchymal cells. The existence of bona fide MSCs with self-renewal capacity and differentiation potential into all mesenchymal lineages, however, has been unclear because of the lack of MSC-specific marker(s) that are not expressed by the terminally differentiated progeny. Meflin, a glycosylphosphatidylinositol-anchored protein, is an MSC marker candidate that is specifically expressed in rare stromal cells in all tissues. Our previous report showed that Meflin expression becomes down-regulated in bone marrow-derived MSCs cultured on plastic, making it difficult to examine the self-renewal and differentiation of Meflin-positive cells at the single-cell level. Here, we traced the lineage of Meflin-positive cells in postnatal and adult mice, showing that those cells differentiated into white and brown adipocytes, osteocytes, chondrocytes and skeletal myocytes. Interestingly, cells derived from Meflin-positive cells formed clusters of differentiated cells, implying the in situ proliferation of Meflin-positive cells or their lineage-committed progenitors. These results, taken together with previous findings that Meflin expression in cultured MSCs was lost upon their multilineage differentiation, suggest that Meflin is a useful potential marker to localize MSCs and/or their immature progenitors in multiple tissues.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Inmunoglobulinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Condrocitos/citología , Condrocitos/metabolismo , Inmunoglobulinas/genética , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Células Musculares/citología , Células Musculares/metabolismo , Osteocitos/citología , Osteocitos/metabolismo
16.
Int J Med Sci ; 17(17): 2703-2717, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162798

RESUMEN

Introduction: The aim of this study was to determine the role of Notch in indoxyl sulfate (IS)-induced vascular calcification (VC). Materials and methods: VC and expression of Notch-related and osteogenic molecules were examined in Dahl salt-sensitive (DS), DS hypertensive (DH), and DH IS-treated rats (DH+IS). The effects of IS on expression of Notch receptors, apoptotic activity, and calcification were examined in cultured aortic smooth muscle cells (SMCs). Results: Medial calcification was noted only in aortas and coronary arteries of DH+IS rats. Notch1, Notch3, and Hes-1 were expressed in aortic SMCs of all rats, but only weakly in the central areas of the media and around the calcified lesions in DH+IS rats. RT-PCR and western blotting of DH+IS rat aortas showed downregulation of Notch ligands, Notch1 and Notch3, downstream transcriptional factors, and SM22, and conversely, overexpression of osteogenic markers. Expression of Notch1 and Notch3 in aortic SMCs was highest in incubation under 500 µM IS for 24hrs, and then decreased time- and dose-dependently. Coupled with this decrease, IS increased caspase 3/7 activity and TUNEL-positive aortic SMCs. In addition, pharmacological Notch signal inhibition with DAPT induced apoptosis in aortic SMCs. ZVAD, a caspase inhibitor abrogated IS-induced and DAPT-induced in vitro vascular calcification. Knockdown of Notch1 and Notch3 cooperatively increased expression of osteogenic transcriptional factors and decreased expression of SM22. Conclusion: Our results suggested that IS-induced VC is mediated through suppression of Notch activity in aortic SMCs, induction of osteogenic differentiation and apoptosis.


Asunto(s)
Indicán/toxicidad , Miocitos del Músculo Liso/patología , Receptores Notch/metabolismo , Calcificación Vascular/patología , Animales , Aorta/citología , Aorta/patología , Calcio/análisis , Línea Celular , Dipéptidos/farmacología , Técnicas de Silenciamiento del Gen , Indicán/administración & dosificación , Miocitos del Músculo Liso/efectos de los fármacos , Ratas , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Calcificación Vascular/inducido químicamente , Calcificación Vascular/diagnóstico
17.
Arterioscler Thromb Vasc Biol ; 40(4): 958-972, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32078339

RESUMEN

OBJECTIVE: Angiocrine factors, mediating the endothelial-mural cell interaction in vascular wall construction as well as maintenance, are incompletely characterized. This study aims to investigate the role of endothelial cell-derived FSTL1 (follistatin-like protein 1) in vascular homeostasis. Approach and Results: Using conditional knockout mouse models, we show that loss of FSTL1 in endothelial cells (Fstl1ECKO) led to an increase of pulmonary vascular resistance, resulting in the heart regurgitation especially with tricuspid valves. However, this abnormality was not detected in mutant mice with Fstl1 knockout in smooth muscle cells or hematopoietic cells. We further showed that there was excessive αSMA (α-smooth muscle actin) associated with atrial endocardia, heart valves, veins, and microvessels after the endothelial FSTL1 deletion. There was also an increase in collagen deposition, as demonstrated in livers of Fstl1ECKO mutants. The SMAD3 (mothers against decapentaplegic homolog 3) phosphorylation (pSMAD3) was significantly enhanced, and pSMAD3 staining was colocalized with αSMA in vein walls, suggesting the activation of TGFß (transforming growth factor ß) signaling in vascular mural cells of Fstl1ECKO mice. Consistently, treatment with a TGFß pathway inhibitor reduced the abnormal association of αSMA with the atria and blood vessels in Fstl1ECKO mutant mice. CONCLUSIONS: The findings imply that endothelial FSTL1 is critical for the homeostasis of vascular walls, and its insufficiency may favor cardiovascular fibrosis leading to heart failure.


Asunto(s)
Endotelio Vascular/fisiopatología , Fibrosis/fisiopatología , Proteínas Relacionadas con la Folistatina/fisiología , Proteína smad3/fisiología , Actinas/metabolismo , Animales , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Proteínas Relacionadas con la Folistatina/metabolismo , Homeostasis , Humanos , Ratones Noqueados , Fosforilación , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/fisiología , Insuficiencia de la Válvula Tricúspide/fisiopatología , Resistencia Vascular
18.
Elife ; 92020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31958058

RESUMEN

Blood vessels are integrated into different organ environments with distinct properties and physiology (Augustin and Koh, 2017). A striking example of organ-specific specialization is the bone vasculature where certain molecular signals yield the opposite effect as in other tissues (Glomski et al., 2011; Kusumbe et al., 2014; Ramasamy et al., 2014). Here, we show that the transcriptional coregulators Yap1 and Taz, components of the Hippo pathway, suppress vascular growth in the hypoxic microenvironment of bone, in contrast to their pro-angiogenic role in other organs. Likewise, the kinase Lats2, which limits Yap1/Taz activity, is essential for bone angiogenesis but dispensable in organs with lower levels of hypoxia. With mouse genetics, RNA sequencing, biochemistry, and cell culture experiments, we show that Yap1/Taz constrain hypoxia-inducible factor 1α (HIF1α) target gene expression in vivo and in vitro. We propose that crosstalk between Yap1/Taz and HIF1α controls angiogenesis depending on the level of tissue hypoxia, resulting in organ-specific biological responses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Fisiológica/genética , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Hipoxia de la Célula/genética , Vía de Señalización Hippo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Osteogénesis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/genética , Proteínas Señalizadoras YAP
19.
Elife ; 82019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31782728

RESUMEN

The homeostasis of heart and other organs relies on the appropriate provision of nutrients and functional specialization of the local vasculature. Here, we have used mouse genetics, imaging and cell biology approaches to investigate how homeostasis in the adult heart is controlled by endothelial EphB4 and its ligand ephrin-B2, which are known regulators of vascular morphogenesis and arteriovenous differentiation during development. We show that inducible and endothelial cell-specific inactivation of Ephb4 in adult mice is compatible with survival, but leads to rupturing of cardiac capillaries, cardiomyocyte hypertrophy, and pathological cardiac remodeling. In contrast, EphB4 is not required for integrity and homeostasis of capillaries in skeletal muscle. Our analysis of mutant mice and cultured endothelial cells shows that EphB4 controls the function of caveolae, cell-cell adhesion under mechanical stress and lipid transport. We propose that EphB4 maintains critical functional properties of the adult cardiac vasculature and thereby prevents dilated cardiomyopathy-like defects.


Asunto(s)
Endotelio Vascular/crecimiento & desarrollo , Efrina-B2/genética , Corazón/crecimiento & desarrollo , Receptor EphB4/genética , Adulto , Animales , Adhesión Celular/genética , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Homeostasis/genética , Humanos , Ligandos , Ratones , Morfogénesis/genética , Músculo Esquelético/crecimiento & desarrollo , Neovascularización Fisiológica/genética
20.
Circulation ; 140(21): 1737-1752, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31564129

RESUMEN

BACKGROUND: Heart failure is a complex syndrome that results from structural or functional impairment of ventricular filling or blood ejection. Protein phosphorylation is a major and essential intracellular mechanism that mediates various cellular processes in cardiomyocytes in response to extracellular and intracellular signals. The RHOA-associated protein kinase (ROCK/Rho-kinase), an effector regulated by the small GTPase RHOA, causes pathological phosphorylation of proteins, resulting in cardiovascular diseases. RHOA also activates protein kinase N (PKN); however, the role of PKN in cardiovascular diseases remains unclear. METHODS: To explore the role of PKNs in heart failure, we generated tamoxifen-inducible, cardiomyocyte-specific PKN1- and PKN2-knockout mice by intercrossing the αMHC-CreERT2 line with Pkn1flox/flox and Pkn2flox/flox mice and applied a mouse model of transverse aortic constriction- and angiotensin II-induced heart failure. To identify a novel substrate of PKNs, we incubated GST-tagged myocardin-related transcription factor A (MRTFA) with recombinant GST-PKN-catalytic domain or GST-ROCK-catalytic domain in the presence of radiolabeled ATP and detected radioactive GST-MRTFA as phosphorylated MRTFA. RESULTS: We demonstrated that RHOA activates 2 members of the PKN family of proteins, PKN1 and PKN2, in cardiomyocytes of mice with cardiac dysfunction. Cardiomyocyte-specific deletion of the genes encoding Pkn1 and Pkn2 (cmc-PKN1/2 DKO) did not affect basal heart function but protected mice from pressure overload- and angiotensin II-induced cardiac dysfunction. Furthermore, we identified MRTFA as a novel substrate of PKN1 and PKN2 and found that MRTFA phosphorylation by PKN was considerably more effective than that by ROCK in vitro. We confirmed that endogenous MRTFA phosphorylation in the heart was induced by pressure overload- and angiotensin II-induced cardiac dysfunction in wild-type mice, whereas cmc-PKN1/2 DKO mice suppressed transverse aortic constriction- and angiotensin II-induced phosphorylation of MRTFA. Although RHOA-mediated actin polymerization accelerated MRTFA-induced gene transcription, PKN1 and PKN2 inhibited the interaction of MRTFA with globular actin by phosphorylating MRTFA, causing increased serum response factor-mediated expression of cardiac hypertrophy- and fibrosis-associated genes. CONCLUSIONS: Our results indicate that PKN1 and PKN2 activation causes cardiac dysfunction and is involved in the transition to heart failure, thus providing unique targets for therapeutic intervention for heart failure.


Asunto(s)
Actinas/metabolismo , Insuficiencia Cardíaca/enzimología , Miocitos Cardíacos/enzimología , Proteína Quinasa C/metabolismo , Transactivadores/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Fosforilación , Unión Proteica , Proteína Quinasa C/deficiencia , Proteína Quinasa C/genética , Transducción de Señal , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...