Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Orthop Surg Res ; 19(1): 310, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789994

RESUMEN

BACKGROUND: Vertebral hemangiomas (VHs) are the most common benign tumors of the spinal column and are often encountered incidentally during routine spinal imaging. METHODS: A retrospective review of the inpatient and outpatient hospital records at our institution was performed for the diagnosis of VHs from January 2005 to September 2023. Search filters included "vertebral hemangioma," "back pain," "weakness," "radiculopathy," and "focal neurological deficits." Radiographic evaluation of these patients included plain X-rays, CT, and MRI. Following confirmation of a diagnosis of VH, these images were used to generate the figures used in this manuscript. Moreover, an extensive literature search was conducted using PubMed for the literature review portion of the manuscript. RESULT: VHs are benign vascular proliferations that cause remodeling of bony trabeculae in the vertebral body of the spinal column. Horizontal trabeculae deteriorate leading to thickening of vertical trabeculae which causes a striated appearance on sagittal magnetic resonance imaging (MRI) and computed tomography (CT), "Corduroy sign," and a punctuated appearance on axial imaging, "Polka dot sign." These findings are seen in "typical vertebral hemangiomas" due to a low vascular-to-fat ratio of the lesion. Contrarily, atypical vertebral hemangiomas may or may not demonstrate the "Corduroy" or "Polka-dot" signs due to lower amounts of fat and a higher vascular component. Atypical vertebral hemangiomas often mimic other neoplastic pathologies, making diagnosis challenging. Although most VHs are asymptomatic, aggressive vertebral hemangiomas can present with neurologic sequelae such as myelopathy and radiculopathy due to nerve root and/or spinal cord compression. Asymptomatic vertebral hemangiomas do not require therapy, and there are many treatment options for vertebral hemangiomas causing pain, radiculopathy, and/or myelopathy. Surgery (corpectomy, laminectomy), percutaneous techniques (vertebroplasty, sclerotherapy, embolization), and radiotherapy can be used in combination or isolation as appropriate. Specific treatment options depend on the lesion's size/location and the extent of neural element compression. There is no consensus on the optimal treatment plan for symptomatic vertebral hemangioma patients, although management algorithms have been proposed. CONCLUSION: While typical vertebral hemangioma diagnosis is relatively straightforward, the differential diagnosis is broad for atypical and aggressive lesions. There is an ongoing debate as to the best approach for managing symptomatic cases, however, surgical resection is often considered first line treatment for patients with neurologic deficit.


Asunto(s)
Hemangioma , Imagen por Resonancia Magnética , Neoplasias de la Columna Vertebral , Humanos , Hemangioma/terapia , Hemangioma/diagnóstico por imagen , Hemangioma/diagnóstico , Neoplasias de la Columna Vertebral/terapia , Neoplasias de la Columna Vertebral/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Masculino , Femenino , Persona de Mediana Edad
2.
Neurosurg Rev ; 47(1): 75, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319484

RESUMEN

Intramedullary spinal cord metastasis (ISCM), though rare, represents a potentially debilitating manifestation of systemic cancer. With emerging advances in cancer care, ISCMs are increasingly being encountered in clinical practice. Herein, we describe one of the larger retrospective single institutional case series on ISCMs, analyze survival and treatment outcomes, and review the literature. All surgically evaluated ISCMs at our institution between 2005 and 2023 were retrospectively reviewed. Demographics, tumor features, treatment, and clinical outcome characteristics were collected. Neurological function was quantified via the Frankel grade and the McCormick score (MCS). The pre- and post-operative Karnofsky performance scores (KPS) were used to assess functional status. Descriptive statistics, univariate analysis, log-rank test, and the Kaplan-Meier survival analysis were performed. A total of 9 patients were included (median age 67 years (range, 26-71); 6 were male). Thoracic and cervical spinal segments were most affected (4 patients each). Six patients (75%) underwent surgical management (1 biopsy and 5 resections), and 3 cases underwent chemoradiation only. Post-operatively, 2 patients had an improvement in their neurological exam with one patient becoming ambulatory after surgery; three patients maintained their neurological exam, and 1 had a decline. There was no statistically significant difference in the pre- and post-operative MCS and median KPS scores in surgically treated patients. Median OS after ISCM diagnosis was 7 months. Absence of brain metastasis, tumor histology (renal and melanoma), cervical/thoracic location, and post-op KPS ≥ 70 showed a trend toward improved overall survival. The incidence of ISCM is increasing, and earlier diagnosis and treatment are considered key for the preservation of neurological function. When patient characteristics are favorable, surgical resection of ISCM can be considered in patients with rapidly progressive neurological deficits. Surgical treatment was not associated with an improvement in overall survival in patients with ISCMs.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Médula Espinal , Neoplasias de la Columna Vertebral , Humanos , Masculino , Anciano , Femenino , Estudios Retrospectivos , Neoplasias de la Columna Vertebral/cirugía , Neoplasias de la Médula Espinal/cirugía , Biopsia
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1793): 20190144, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31928188

RESUMEN

While only distantly related to mammals, the anatomy of Permian gorgonopsians has shed light on the functional biology of non-mammalian synapsids and on the origins of iconic 'mammal-like' anatomical traits. However, little is known of gorgonopsian behaviour or physiology, which would aid in reconstructing the paleobiological context in which familiar mammalian features arose. Using multi-modal imaging, we report a discrete osseous lesion in the forelimb of a late Permian-aged gorgonopsian synapsid, recording reactive periosteal bone deposition and providing insights into the origins and diversity of skeletal healing responses in premammalian synapsids. We suggest that the localized lesion on the anterolateral (preaxial) shaft of the left radius represents acute periostitis and, conservatively, most likely developed as a subperiosteal haematoma with subsequent bone deposition and limited internal remodelling. The site records an inner zone of reactive cortical bone forming irregular to radial bony spicules and an outer, denser zone of slowed subperiosteal bone apposition, all of which likely occurred within a single growing season. In surveys of modern reptiles-crocodylians, varanids-such haematomas are rare compared to other documented osteopathologies. The extent and rapidity of the healing response is reminiscent of mammalian and dinosaurian bone pathologies, and may indicate differing behaviour or bone physiology compared to non-dinosaurian reptiles. This report adds to a growing list of putative disease entities recognized in early synapsids and broadens comparative baselines for pathologies and the evolution of bone response to disease in mammalian forebears. This article is part of the theme issue 'Vertebrate palaeophysiology'.


Asunto(s)
Huesos/patología , Fósiles/patología , Mamíferos/anatomía & histología , Reptiles/anatomía & histología , Anfibios/anatomía & histología , Animales , Evolución Biológica , Aves/anatomía & histología , Zambia
4.
J Anat ; 235(5): 873-882, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373387

RESUMEN

The human clavicle (i.e. collarbone) is an unusual long bone due to its signature S-shaped curve and variability in macrostructure observed between individuals. Because of the complex nature of how the upper limb moves, as well as due to its complex musculoskeletal arrangement, the biomechanics, in particular the mechanical loadings, of the clavicle are not fully understood. Given that bone remodeling can be influenced by bone stress, the histologic organization of Haversian bone offers a hypothesis of responses to force distributions experienced across a bone. Furthermore, circularly polarized light microscopy can be used to determine the orientation of collagen fibers, providing additional information on how bone matrix might organize to adapt to direction of external loads. We examined Haversian density and collagen fiber orientation, along with cross-sectional geometry, to test whether the clavicle midshaft shows unique adaptation to atypical load-bearing when compared with the sternal (medial) and acromial (lateral) shaft regions. Because fractures are most common at the midshaft, we predicted that the cortical bone structure would show both disparities in Haversian remodeling and nonrandomly oriented collagen fibers in the midshaft compared with the sternal and acromial regions. Human clavicles (n = 16) were sampled via thin-sections at the sternal, middle, and acromial ends of the shaft, and paired sample t-tests were employed to evaluate within-individual differences in microstructural or geometric properties. We found that Haversian remodeling is slightly but significantly reduced in the middle of the bone. Analysis of collagen fiber orientation indicated nonrandom fiber orientations that are overbuilt for tensile loads or torsion but are poorly optimized for compressive loads throughout the clavicle. Geometric properties of percent bone area, polar second moment of area, and shape (Imax /Imin ) confirmed the conclusions drawn by existing research on clavicle macrostructure. Our results highlight that mediolateral shape changes might be accompanied by slight changes in Haversian density, but bone matrix organization is predominantly adapted to resisting tensile strains or torsion throughout and may be a major factor in the risk of fracture when experiencing atypical compression.


Asunto(s)
Clavícula/anatomía & histología , Hueso Cortical/anatomía & histología , Soporte de Peso/fisiología , Remodelación Ósea/fisiología , Clavícula/fisiología , Hueso Cortical/fisiología , Humanos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA