Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cell Cycle ; 12(24): 3841-51, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24296616

RESUMEN

Primary rodent cells undergo replicative senescence, independent from telomere shortening. We have recently shown that treatment with rapamycin during passages 3-7 suppressed replicative senescence in rat embryonic fibroblasts (REFs), which otherwise occurred by 10-14 passages. Here, we further investigated rapamycin-primed cells for an extended number of passages. Rapamycin-primed cells continued to proliferate without accumulation of senescent markers. Importantly, these cells retained the ability to undergo serum starvation- and etoposide-induced cell cycle arrest. The p53/p21 pathway was functional. This indicates that rapamycin did not cause either transformation or loss of cell cycle checkpoints. We found that rapamycin activated transcription of pluripotent genes, oct-4, sox-2, nanog, as well as further upregulated telomerase (tert) gene. The rapamycin-derived cells have mostly non-rearranged, near-normal karyotype. Still, when cultivated for a higher number of passages, these cells acquired a chromosomal marker within the chromosome 3. We conclude that suppression mTORC1 activity may prevent replicative senescence without transformation of rodent cells.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Proteínas de Homeodominio/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética , Sirolimus/farmacología , Telomerasa/genética , Animales , Autofagia , Técnicas de Cultivo de Célula , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Cariotipo , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Ratas , Factores de Transcripción SOXB1/metabolismo , Telomerasa/metabolismo
2.
Int Rev Cell Mol Biol ; 299: 161-98, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22959303

RESUMEN

Embryonic stem cells (ESCs) have unlimited proliferative potential, while retaining the ability to differentiate into descendants of all three embryonic layers. High proliferation rate of ESCs is accompanied by a shortening of the G(1) phase and the lack of G(1) checkpoint following DNA damage. The absence of G(1) arrest in ESCs after DNA damage is likely caused by a dysfunction of the p53-dependent p21Waf1 pathway that is a key event for the maintenance of pluripotency. There are controversial data on the functional status of p53, but it is well established that one of the key p53 target-p21Waf1-is expressed in ESCs at a very low level. Despite the lack of G(1) checkpoint, ESCs are capable to repair DNA defects; moreover the DNA damage response (DDR) signaling operates very effectively throughout the cell cycle. This review covers also the results obtained with the reprogramming of somatic cells into the induced pluripotent stem cells, for which have been shown that a partial dysfunction of the p53Waf1 pathway increases the frequency of generation of pluripotent cells. In summary, these results indicate that the G(1) checkpoint control and DDR are distinct from somatic cells and their status is tightly connected with maintaining of pluripotency and self-renewal.


Asunto(s)
Ciclo Celular , Daño del ADN , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Animales , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA