Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 225(2): 705-734, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32016558

RESUMEN

In the hippocampal CA1 area, the GABAergic trilaminar cells have their axon distributed locally in three layers and also innervate the subiculum. Trilaminar cells have a high level of somato-dendritic muscarinic M2 acetylcholine receptor, lack somatostatin expression and their presynaptic inputs are enriched in mGluR8a. But the origin of their inputs and their behaviour-dependent activity remain to be characterised. Here we demonstrate that (1) GABAergic neurons with the molecular features of trilaminar cells are present in CA1 and CA3 in both rats and mice. (2) Trilaminar cells receive mGluR8a-enriched GABAergic inputs, e.g. from the medial septum, which are probably susceptible to hetero-synaptic modulation of neurotransmitter release by group III mGluRs. (3) An electron microscopic analysis identifies trilaminar cell output synapses with specialised postsynaptic densities and a strong bias towards interneurons as targets, including parvalbumin-expressing cells in the CA1 area. (4) Recordings in freely moving rats revealed the network state-dependent segregation of trilaminar cell activity, with reduced firing during movement, but substantial increase in activity with prolonged burst firing (> 200 Hz) during slow wave sleep. We predict that the behaviour-dependent temporal dynamics of trilaminar cell firing are regulated by their specialised inhibitory inputs. Trilaminar cells might support glutamatergic principal cells by disinhibition and mediate the binding of neuronal assemblies between the hippocampus and the subiculum via the transient inhibition of local interneurons.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Animales , Femenino , Neuronas GABAérgicas/ultraestructura , Hipocampo/ultraestructura , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/metabolismo , Vías Nerviosas/ultraestructura , Ratas Sprague-Dawley , Receptor Muscarínico M2/metabolismo
2.
J Neurosci ; 39(23): 4527-4549, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926750

RESUMEN

The medial septum implements cortical theta oscillations, a 5-12 Hz rhythm associated with locomotion and paradoxical sleep reflecting synchronization of neuronal assemblies such as place cell sequence coding. Highly rhythmic burst-firing parvalbumin-positive GABAergic medial septal neurons are strongly coupled to theta oscillations and target cortical GABAergic interneurons, contributing to coordination within one or several cortical regions. However, a large population of medial septal neurons of unidentified neurotransmitter phenotype and with unknown axonal target areas fire with a low degree of rhythmicity. We investigated whether low-rhythmic-firing neurons (LRNs) innervated similar or different cortical regions to high-rhythmic-firing neurons (HRNs) and assessed their temporal dynamics in awake male mice. The majority of LRNs were GABAergic and parvalbumin-immunonegative, some expressing calbindin; they innervated interneurons mostly in the dentate gyrus (DG) and CA3. Individual LRNs showed several distinct firing patterns during immobility and locomotion, forming a parallel inhibitory stream for the modulation of cortical interneurons. Despite their fluctuating firing rates, the preferred firing phase of LRNs during theta oscillations matched the highest firing probability phase of principal cells in the DG and CA3. In addition, as a population, LRNs were markedly suppressed during hippocampal sharp-wave ripples, had a low burst incidence, and several of them did not fire on all theta cycles. Therefore, CA3 receives GABAergic input from both HRNs and LRNs, but the DG receives mainly LRN input. We propose that distinct GABAergic LRNs contribute to changing the excitability of the DG and CA3 during memory discrimination via transient disinhibition of principal cells.SIGNIFICANCE STATEMENT For the encoding and recall of episodic memories, nerve cells in the cerebral cortex are activated in precisely timed sequences. Rhythmicity facilitates the coordination of neuronal activity and these rhythms are detected as oscillations of different frequencies such as 5-12 Hz theta oscillations. Degradation of these rhythms, such as through neurodegeneration, causes memory deficits. The medial septum, a part of the basal forebrain that innervates the hippocampal formation, contains high- and low-rhythmic-firing neurons (HRNs and LRNs, respectively), which may contribute differentially to cortical neuronal coordination. We discovered that GABAergic LRNs preferentially innervate the dentate gyrus and the CA3 area of the hippocampus, regions important for episodic memory. These neurons act in parallel with the HRNs mostly via transient inhibition of inhibitory neurons.


Asunto(s)
Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Neuronas GABAérgicas/fisiología , Vías Nerviosas/fisiología , Tabique del Cerebro/citología , Potenciales de Acción , Animales , Región CA3 Hipocampal/citología , Calbindinas/análisis , Giro Dentado/citología , Neuronas GABAérgicas/química , Masculino , Memoria Episódica , Recuerdo Mental/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/análisis , Parvalbúminas/análisis , Carrera , Tabique del Cerebro/fisiología , Ritmo Teta/fisiología , Vigilia
3.
PLoS Biol ; 16(6): e2006387, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29912866

RESUMEN

Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.


Asunto(s)
Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Neuronas GABAérgicas/clasificación , Neuronas GABAérgicas/metabolismo , Potenciales de Acción , Algoritmos , Animales , Quimiocinas CXC/genética , Dendritas/metabolismo , Neuronas GABAérgicas/citología , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Modelos Neurológicos , Células Piramidales/citología , Células Piramidales/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transmisión Sináptica , Transcriptoma , Péptido Intestinal Vasoactivo/genética
4.
Brain Struct Funct ; 223(5): 2409-2432, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29500537

RESUMEN

Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.


Asunto(s)
Neuronas GABAérgicas/fisiología , Hipocampo/citología , Tabique del Cerebro/citología , Lóbulo Temporal/citología , Ritmo Teta/fisiología , Potenciales de Acción/fisiología , Animales , Proteínas Portadoras/metabolismo , Procesamiento de Imagen Asistido por Computador , Masculino , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Red Nerviosa/fisiología , Vías Nerviosas , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
5.
Hippocampus ; 27(4): 359-377, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27997999

RESUMEN

Long-range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O-LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin-labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave-ripples, most projection cells, including a novel SOM+ GABAergic back-projecting cell, increased their activity similar to bistratified cells, but unlike O-LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O-LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior- and network state-dependent binding of neuronal assemblies amongst functionally-related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.


Asunto(s)
Neuronas GABAérgicas/citología , Neuronas GABAérgicas/fisiología , Hipocampo/citología , Hipocampo/fisiología , Actividad Motora/fisiología , Sueño/fisiología , Potenciales de Acción/fisiología , Animales , Biotina/análogos & derivados , Electrodos Implantados , Masculino , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador , Ritmo Teta/fisiología , Vigilia/fisiología
6.
Brain Struct Funct ; 222(4): 1809-1827, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27783219

RESUMEN

Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.


Asunto(s)
Región CA1 Hipocampal/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Estimulación Eléctrica , Neuronas GABAérgicas/citología , Interneuronas/citología , Masculino , Ratas Sprague-Dawley
8.
Neuron ; 82(4): 872-86, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24794095

RESUMEN

Neuropeptides acting on pre- and postsynaptic receptors are coreleased with GABA by interneurons including bistratified and O-LM cells, both expressing somatostatin but innervating segregated dendritic domains of pyramidal cells. Neuropeptide release requires high-frequency action potentials, but the firing patterns of most peptide/GABA-releasing interneurons during behavior are unknown. We show that behavioral and network states differentiate the activities of bistratified and O-LM cells in freely moving rats. Bistratified cells fire at higher rates during sleep than O-LM cells and, unlike O-LM cells, strongly increase spiking during sharp wave-associated ripples (SWRs). In contrast, O-LM interneurons decrease firing during sleep relative to awake states and are mostly inhibited during SWRs. During movement, both cell types fire cooperatively at the troughs of theta oscillations but with different frequencies. Somatostatin and GABA are differentially released to distinct dendritic zones of CA1 pyramidal cells during sleep and wakefulness to coordinate segregated glutamatergic inputs from entorhinal cortex and CA3.


Asunto(s)
Hipocampo/citología , Interneuronas/fisiología , Movimiento/fisiología , Sueño/fisiología , Somatostatina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Vigilia
9.
Philos Trans R Soc Lond B Biol Sci ; 369(1635): 20120518, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24366131

RESUMEN

The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states.


Asunto(s)
Axones/fisiología , Relojes Biológicos/fisiología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Células Piramidales/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Vías Nerviosas/fisiología , Parvalbúminas/fisiología , Ratas
10.
Nat Neurosci ; 16(12): 1802-1811, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24141313

RESUMEN

Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation.


Asunto(s)
Axones/fisiología , Región CA3 Hipocampal/citología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Células Piramidales/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Proteínas de Arabidopsis/metabolismo , Axones/ultraestructura , Biotina/análogos & derivados , Biotina/metabolismo , Ondas Encefálicas/fisiología , Dendritas/metabolismo , Dendritas/ultraestructura , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/ultraestructura , Vías Nerviosas/fisiología , Parvalbúminas/metabolismo , Periodicidad , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
11.
J Neurosci ; 33(16): 6809-25, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595740

RESUMEN

Hippocampal CA3 area generates temporally structured network activity such as sharp waves and gamma and theta oscillations. Parvalbumin-expressing basket cells, making GABAergic synapses onto cell bodies and proximal dendrites of pyramidal cells, control pyramidal cell activity and participate in network oscillations in slice preparations, but their roles in vivo remain to be tested. We have recorded the spike timing of parvalbumin-expressing basket cells in areas CA2/3 of anesthetized rats in relation to CA3 putative pyramidal cell firing and activity locally and in area CA1. During theta oscillations, CA2/3 basket cells fired on the same phase as putative pyramidal cells, but, surprisingly, significantly later than downstream CA1 basket cells. This indicates a distinct modulation of CA3 and CA1 pyramidal cells by basket cells, which receive different inputs. We observed unexpectedly large dendritic arborization of CA2/3 basket cells in stratum lacunosum moleculare (33% of length, 29% surface, and 24% synaptic input from a total of ∼35,000), different from the dendritic arborizations of CA1 basket cells. Area CA2/3 basket cells fired phase locked to both CA2/3 and CA1 gamma oscillations, and increased firing during CA1 sharp waves, thus supporting the role of CA3 networks in the generation of gamma oscillations and sharp waves. However, during ripples associated with sharp waves, firing of CA2/3 basket cells was phase locked only to local but not CA1 ripples, suggesting the independent generation of fast oscillations by basket cells in CA1 and CA2/3. The distinct spike timing of basket cells during oscillations in CA1 and CA2/3 suggests differences in synaptic inputs paralleled by differences in dendritic arborizations.


Asunto(s)
Potenciales de Acción/fisiología , Región CA3 Hipocampal/citología , Dendritas/fisiología , Neuronas/citología , Neuronas/fisiología , Parvalbúminas/metabolismo , Animales , Relojes Biológicos/fisiología , Biotina/análogos & derivados , Biotina/metabolismo , Calbindinas , Dendritas/ultraestructura , Lateralidad Funcional , Técnicas In Vitro , Masculino , Microscopía Electrónica de Transmisión , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura
12.
Nat Neurosci ; 15(9): 1265-71, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22864613

RESUMEN

A large variety of GABAergic interneurons control information processing in the hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information processing during behavior is not known. We employed a new technique for recording and labeling interneurons and pyramidal cells in drug-free, freely moving rats. Recorded parvalbumin-expressing basket interneurons innervated somata and proximal pyramidal cell dendrites, whereas nitric oxide synthase- and neuropeptide Y-expressing ivy cells provided synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike-timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket, but not ivy, cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thereby differentially controlling network activity during behavior.


Asunto(s)
Conducta Animal/fisiología , Hipocampo/fisiología , Interneuronas/fisiología , Análisis de Varianza , Animales , Axones/fisiología , Dendritas/fisiología , Estimulación Eléctrica , Electrodos Implantados , Electroencefalografía , Fenómenos Electrofisiológicos , Potenciales Evocados/fisiología , Hipocampo/citología , Inmunohistoquímica , Microscopía Electrónica , Red Nerviosa/citología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...