Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897744

RESUMEN

The dynamic balance of transcriptional and translational regulation together with degron-controlled proteolysis shapes the ever-changing cellular proteome. While a large variety of degradation signals has been characterized, our knowledge of cis-acting protein motifs that can in vivo stabilize otherwise short-lived proteins is very limited. We have identified and characterized a conserved 13-mer protein segment derived from the p54/Rpn10 ubiquitin receptor subunit of the Drosophila 26S proteasome, which fulfills all the characteristics of a protein stabilization motif (STABILON). Attachment of STABILON to various intracellular as well as medically relevant secreted model proteins resulted in a significant increase in their cellular or extracellular concentration in mammalian cells. We demonstrate that STABILON acts as a universal and dual function motif that, on the one hand, increases the concentration of the corresponding mRNAs and, on the other hand, prevents the degradation of short-lived fusion proteins. Therefore, STABILON may lead to a breakthrough in biomedical recombinant protein production.


Asunto(s)
Proteínas de Drosophila , Complejo de la Endopetidasa Proteasomal , Secuencias de Aminoácidos , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mamíferos/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo
3.
Breast Cancer Res ; 22(1): 75, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660617

RESUMEN

BACKGROUND: PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. METHODS: The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. RESULTS: Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. CONCLUSION: PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animales , Apoptosis/fisiología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis , Proliferación Celular/fisiología , Progresión de la Enfermedad , Femenino , Xenoinjertos , Homeostasis , Humanos , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Células Tumorales Cultivadas
4.
Front Oncol ; 10: 157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133294

RESUMEN

Background: The close proximity of adipose tissue and mammary epithelium predispose involvement of adipose cells in breast cancer development. Adipose-tissue stem cells (ASCs) contribute to tumor stroma and promote growth of cancer cells. In our previous study, we have shown that murine ASCs, which undergo polyploidization during their prolonged in vitro culturing, enhanced the proliferation of 4T1 murine breast cancer cells in IGF1 dependent manner. Aims: In the present study, our aim was to clarify the regulation of ASC-derived IGF1. Methods: 4T1 murine breast carcinoma cells were co-transplanted with visceral fat-derived ASCs (vASC) or with the polyploid ASC.B6 cell line into female BALB/c mice and tumor growth and lung metastasis were monitored. The conditioned media of vASCs and ASC.B6 cells were subjected to LC-MS/MS analysis and the production of IGFBP2 was verified by Western blotting. The regulatory effect was examined by adding recombinant IGFBP2 to the co-culture of ASC.B6 and 4T1. Akt/protein kinase B (PKB) activation was detected by Western blotting. Results: Polyploid ASCs promoted the tumor growth and metastasis more potently than vASCs with normal karyotype. vASCs produced the IGF1 regulator IGFBP2, which inhibited proliferation of 4T1 cells. Downregulation of IGFBP2 by polyploidization of ASCs and enhanced secretion of IGF1 allowed survival signaling in 4T1 cells, leading to Akt phosphorylation. Conclusions: Our results implicate that ASCs in the tumor microenvironment actively regulate the growth of breast cancer cells through the IGF/IGFBP system.

5.
Front Immunol ; 10: 2459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681332

RESUMEN

Recently, it has been described that programmed cell death protein 1 (PD-1) overexpressing melanoma cells are highly aggressive. However, until now it has not been defined which factors lead to the generation of PD-1 overexpressing subpopulations. Here, we present that melanoma-derived exosomes, conveying oncogenic molecular reprogramming, induce the formation of a melanoma-like, PD-1 overexpressing cell population (mMSCPD-1+) from naïve mesenchymal stem cells (MSCs). Exosomes and mMSCPD-1+ cells induce tumor progression and expression of oncogenic factors in vivo. Finally, we revealed a characteristic, tumorigenic signaling network combining the upregulated molecules (e.g., PD-1, MET, RAF1, BCL2, MTOR) and their upstream exosomal regulating proteins and miRNAs. Our study highlights the complexity of exosomal communication during tumor progression and contributes to the detailed understanding of metastatic processes.


Asunto(s)
Exosomas/genética , Melanoma/genética , Células Madre Mesenquimatosas/metabolismo , Oncogenes/genética , Receptor de Muerte Celular Programada 1/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Células Cultivadas , Progresión de la Enfermedad , Exosomas/metabolismo , Exosomas/ultraestructura , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patología , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Receptor de Muerte Celular Programada 1/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
6.
BMC Cancer ; 18(1): 872, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185144

RESUMEN

BACKGROUND: Adipose-tissue stem cells (ASCs) are subject of intensive research since their successful use in regenerative therapy. The drawback of ASCs is that they may serve as stroma for cancer cells and assist tumor progression. It is disquieting that ASCs frequently undergo genetic and epigenetic changes during their in vitro propagation. In this study, we describe the polyploidization of murine ASCs and the accompanying phenotypical, gene expressional and functional changes under long term culturing. METHODS: ASCs were isolated from visceral fat of C57BL/6 J mice, and cultured in vitro for prolonged time. The phenotypical changes were followed by microscopy and flow cytometry. Gene expressional changes were determined by differential transcriptome analysis and changes in protein expression were shown by Western blotting. The tumor growth promoting effect of ASCs was examined by co-culturing them with 4 T1 murine breast cancer cells. RESULTS: After five passages, the proliferation of ASCs decreases and cells enter a senescence-like state, from which a proportion of cells escape by polyploidization. The resulting ASC line is susceptible to adipogenic, osteogenic and chondrogenic differentiation, and expresses the stem cell markers CD29 and Sca-1 on an upregulated level. Differential transcriptome analysis of ASCs with normal and polyploid karyotype shows altered expression of genes that are involved in regulation of cancer, cellular growth and proliferation. We verified the increased expression of Klf4 and loss of Nestin on protein level. We found that elevated production of insulin-like growth factor 1 by polyploid ASCs rendered them more potent in tumor growth promotion in vitro. CONCLUSIONS: Our model indicates how ASCs with altered genetic background may support tumor progression.


Asunto(s)
Tejido Adiposo/citología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Poliploidía , Células Madre/citología , Células Madre/metabolismo , Animales , Antígenos de Superficie/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Cariotipo , Factor 4 Similar a Kruppel , Ratones , Transcriptoma
7.
PLoS One ; 12(6): e0179950, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28640864

RESUMEN

There is convincing epidemiological and experimental evidence that capsaicin, a potent natural transient receptor potential cation channel vanilloid member 1 (TRPV1) agonist, has anticancer activity. However, capsaicin cannot be given systemically in large doses, because of its induction of acute pain and neurological inflammation. MRS1477, a dihydropyridine derivative acts as a positive allosteric modulator of TRPV1, if added together with capsaicin, but is ineffective, if given alone. Addition of MRS1477 evoked Ca2+ signals in MCF7 breast cancer cells, but not in primary breast epithelial cells. This indicates that MCF7 cells not only express functional TRPV1 channels, but also produce endogenous TRPV1 agonists. We investigated the effects of MRS1477 and capsaicin on cell viability, caspase-3 and -9 activities and reactive oxygen species production in MCF7 cells. The fraction of apoptotic cells was increased after 3 days incubation with capsaicin (10 µM) paralleled by increased reactive oxygen species production and caspase activity. These effects were even more pronounced, when cells were incubated with MRS1477 (2 µM) either alone or together with CAPS (10 µM). Capsazepine, a TRPV1 blocker, inhibited both the effect of capsaicin and MRS1477. Whole-cell patch clamp recordings revealed that capsaicin-evoked TRPV1-mediated current density levels were increased after 3 days incubation with MRS1477 (2 µM). However, the tumor growth in MCF7 tumor-bearing immunodeficient mice was not significantly decreased after treatment with MRS1477 (10 mg/ kg body weight, i.p., injection twice a week). In conclusion, in view of a putative in vivo treatment with MRS1477 or similar compounds further optimization is required.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Dihidropiridinas/farmacología , Terapia Molecular Dirigida , Canales Catiónicos TRPV/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Capsaicina/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Stem Cells Dev ; 24(18): 2171-80, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26153898

RESUMEN

When mesenchymal stem cells (MSCs) are used for therapy of immunological pathologies, they get into an inflammatory environment, altering the effectiveness of the treatment. To establish the impact of environmental inflammatory factors on MSCs' immunofunction in the mirror of intrinsic heterogeneity of mouse MSC population, individual MSC clones were generated and characterized. Adipogenic but not osteogenic differentiation and pro-angiogenic activity of five independent MSC cell lines were similar. Regarding osteogenic differentiation, clones MSC3 and MSC6 exhibited poorer capacity than MSC2, MSC4, and MSC5. To study the immunosuppressive heterogeneity, in vitro and in vivo experiments have been carried out using T-cell proliferation assay and delayed-type hypersensitivity (DTH) response, respectively. A remarkable difference was found between the clones in their ability to inhibit T-cell proliferation in the following order: MSC2≥MSC5>MSC4>MSC3 >> MSC6. Nevertheless, the differences between the immunosuppressive activities of the individual clones disappeared on pretreatment of the cells with pro-inflammatory cytokines, a procedure called licensing. Stimulation of all clones with IFN-γ and TNF-α resulted in elevation of their inhibitory capability to a similar level. Nitric oxide (NO) and prostaglandin E2 (PGE2) were identified as major mediators of immunofunction of the MSC clones. The earlier findings were also supported by in vivo results. Without licensing, MSC2 inhibited DTH response, while MSC6 did not affect DTH response. In contrast, prestimulation of MSC6 with inflammatory cytokines resulted in strong suppression by this clone as well. Here, we have showed that MSC population is functionally heterogeneous in terms of immunosuppressive function; however, this variability is largely reduced under pro-inflammatory conditions.


Asunto(s)
Adipogénesis/fisiología , Citocinas/inmunología , Tolerancia Inmunológica/inmunología , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dinoprostona/inmunología , Inflamación/inmunología , Interferón gamma/inmunología , Activación de Linfocitos/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/inmunología , Linfocitos T/inmunología , Factor de Necrosis Tumoral alfa/inmunología
11.
Chromosome Res ; 23(1): 143-57, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25596828

RESUMEN

Mammalian artificial chromosomes (MACs) are non-integrating, autonomously replicating natural chromosome-based vectors that may carry a vast amount of genetic material, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in target cells. Satellite-DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian and plant species. These artificially generated accessory chromosomes are composed of predictable DNA sequences, and they contain defined genetic information. SATACs have already passed a number of obstacles crucial to their further development as gene therapy vectors, including large-scale purification, transfer of purified artificial chromosomes into different cells and embryos, generation of transgenic animals and germline transmission with purified SATACs, and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals. SATACs could be used in cell therapy protocols. For these methods, the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells.


Asunto(s)
Cromosomas Artificiales de los Mamíferos/genética , ADN Satélite/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Mamíferos/genética , Modelos Genéticos , Células Madre/metabolismo , Animales , Animales Modificados Genéticamente , Humanos
12.
Sci Rep ; 4: 6776, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25345415

RESUMEN

The B6.Cg-Tg(Thy1-YFP)16Jrs/J transgenic mouse strain, widely used to study neuronal development and regeneration, expresses the yellow fluorescent protein (YFP) in the peripheral nerves and the central nervous system under the control of regulatory sequences of the Thy1 gene. The Thy1 (CD90) cell surface glycoprotein is present on many cell types besides neurons, and is known to be involved in cell adhesion, migration and signal transduction. We hypothesized that Thy1-activating conditions could probably activate the truncated Thy1 regulatory sequences used in the Thy1-YFP construct, resulting in YFP transgene expression outside the nervous system. We demonstrated that the stroma of subcutaneous tumours induced by the injection of 4T1 or MC26 carcinoma cells into BALB/c(Thy1-YFP) mice, carrying the same construct, indeed expressed the YFP transgene. In the tumour mass, the yellow-green fluorescent stromal cells were clearly distinguishable from 4T1 carcinoma cells stably transfected with red fluorescent protein. Local inflammation induced by subcutaneous injection of complete Freund's adjuvant, as well as the experimental wound-healing milieu, also triggered YFP fluorescence in both the BALB/c(Thy1-YFP) and B6.Cg-Tg(Thy1-YFP)16Jrs/J mice, pointing to eventual overlapping pathways of wound-healing, inflammation and tumour growth.


Asunto(s)
Diagnóstico por Imagen/métodos , Inflamación/diagnóstico , Neoplasias Experimentales/diagnóstico , Cicatrización de Heridas , Animales , Inflamación/genética , Inflamación/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Imagen Molecular/métodos , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transporte de Proteínas , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Activación Transcripcional , Cicatrización de Heridas/genética
13.
PLoS One ; 9(1): e85565, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454889

RESUMEN

Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.


Asunto(s)
Cromosomas Artificiales de los Mamíferos/genética , Genes , Vectores Genéticos , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , Cartilla de ADN , Modelos Animales de Enfermedad , Hibridación Fluorescente in Situ , Ratones , Reacción en Cadena de la Polimerasa
14.
Cytometry A ; 83(12): 1073-84, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002744

RESUMEN

Many bench-top flow cytometers (b-FCs) are compatible with microsphere-based multiplexed assays. Disciplines implementing b-FCs-based assays are expanding; they include monitoring and validating food quality. A multiplexed platform protocol was evaluated for poly-mycotoxin assays, which is compatible with a variety of b-FC models. The seven instruments included: BD FACSCalibur(™) , BD FACSArray(™) Bioanalyzer, Accuri C6, Partec CyFlow(®) Space, Beckman Coulter FC 500, Guava EasyCyte Mini, and Luminex 100 (™) . Current reports related to the food industry describe fungal co-infections leading to poly-mycotoxin contamination in grain (Sulyok M, Berthiller F, Krska R, Schuhmacher R, Rapid Commun Mass Spectrom 2006;20:2649-2659). It is imperative to determine whether b-FC-based assays can replace traditional single-mycotoxin enzyme-linked immunosorbent assay (ELISA). A six-plexed poly-mycotoxin kit was tested on seven different b-FCs. The modified kit was initially developed for the BD FACSArray(™) Bioanalyzer (BD Biosciences) (Czeh A, Mandy F, Feher-Toth S, Torok L, Mike Z, Koszegi B, Lustyik G, J Immunol Methods 2012;384:71-80). With the multiplexed platform, it is possible to identify up to six mycotoxin contaminants simultaneously at regional grain collection/transfer/inspection facilities. In the future, elimination of contaminated food threat may be better achieved with the inclusion of b-FCs in the food protection arsenal. A universal protocol, matched with postacquisition software, offers an effective alternative platform compared to using a series of ELISA kits. To support side-by-side evaluation of seven flow cytometers, an instrument-independent fluorescence emission calibration was added to the protocol. All instrument performances were evaluated for strength of agreement based on paired sets of evaluation to predicate method. The results suggest that all b-FCs were acceptable of performing with the multiplexed kit for five of six mycotoxins. For OTA, the detection sensitivity was consistent only for five of the seven instruments.


Asunto(s)
Citometría de Flujo/instrumentación , Micotoxinas/análisis , Calibración , Citometría de Flujo/normas , Microbiología de Alimentos , Humanos , Juego de Reactivos para Diagnóstico/normas , Estándares de Referencia , Reproducibilidad de los Resultados , Programas Informáticos
15.
Immunol Lett ; 148(1): 34-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22898052

RESUMEN

To clarify controversies in the literature of the field, we have purified and characterized B16F1 melanoma cell derived exosomes (mcd-exosomes) then we attempted to dissect their immunological activities. We tested how mcd-exosomes influence CD4+ T cell proliferation induced by bone marrow derived dendritic cells; we quantified NF-κB activation in mature macrophages stimulated with mcd-exosomes, and we compared the cytokine profile of LPS-stimulated, IL-4 induced, and mcd-exosome treated macrophages. We observed that mcd-exosomes helped the maturation of dendritic cells, enhancing T cell proliferation induced by the treated dendritic cells. The exosomes also activated macrophages, as measured by NF-κB activation. The cytokine and chemokine profile of macrophages treated with tumor cell derived exosomes showed marked differences from those induced by either LPS or IL-4, and it suggested that exosomes may play a role in the tumor progression and metastasis formation through supporting tumor immune escape mechanisms.


Asunto(s)
Células Dendríticas/inmunología , Exosomas/inmunología , Macrófagos/inmunología , Melanoma/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiocinas/inmunología , Quimiocinas/metabolismo , Técnicas de Cocultivo , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/metabolismo , Exosomas/metabolismo , Exosomas/ultraestructura , Femenino , Interleucina-4/farmacología , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/citología , Macrófagos/metabolismo , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , FN-kappa B/inmunología , FN-kappa B/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
16.
PLoS One ; 7(7): e41372, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844466

RESUMEN

Bone marrow derived mesenchymal stromal cells (MSCs) have recently been implicated as one source of the tumor-associated stroma, which plays essential role in regulating tumor progression. In spite of the intensive research, the individual factors in MSCs controlling tumor progression have not been adequately defined. In the present study we have examined the role of galectin-1 (Gal-1), a protein highly expressed in tumors with poor prognosis, in MSCs in the course of tumor development. Co-transplantation of wild type MSCs with 4T1 mouse breast carcinoma cells enhances the incidence of palpable tumors, growth, vascularization and metastasis. It also reduces survival compared to animals treated with tumor cells alone or in combination with Gal-1 knockout MSCs. In vitro studies show that the absence of Gal-1 in MSCs does not affect the number of migrating MSCs toward the tumor cells, which is supported by the in vivo migration of intravenously injected MSCs into the tumor. Moreover, differentiation of endothelial cells into blood vessel-like structures strongly depends on the expression of Gal-1 in MSCs. Vital role of Gal-1 in MSCs has been further verified in Gal-1 knockout mice. By administering B16F10 melanoma cells into Gal-1 deficient animals, tumor growth is highly reduced compared to wild type animals. Nevertheless, co-injection of wild type but not Gal-1 deficient MSCs results in dramatic tumor growth and development.These results confirm that galectin-1 is one of the critical factors in MSCs regulating tumor progression.


Asunto(s)
Galectina 1/metabolismo , Melanoma Experimental/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Galectina 1/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/metabolismo , Ratones , Microvasos/metabolismo
17.
Int J Mol Sci ; 12(9): 6116-34, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016648

RESUMEN

Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment.


Asunto(s)
Antineoplásicos/farmacología , Toxicogenética/métodos , Transcriptoma/efectos de los fármacos , Xenobióticos/farmacología , Compuestos de Anilina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Camptotecina/análogos & derivados , Camptotecina/farmacología , Cumarinas/farmacología , Doxorrubicina/farmacología , Femenino , Corazón/efectos de los fármacos , Irinotecán , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos BALB C , Miocardio/metabolismo , Miocardio/patología , Fenilendiaminas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Rotenona/farmacología , Sulfasalazina/farmacología
18.
Methods Mol Biol ; 738: 151-60, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21431726

RESUMEN

Gene therapy encounters important problems such as insertional mutagenesis caused by the integration of viral vectors. These problems could be circumvented by the use of mammalian artificial chromosomes (MACs) that are unique and high capacity gene delivery tools. MACs were delivered into various target cell lines including stem cells by microcell-mediated chromosome transfer (MMCT), microinjection, and cationic lipid and dendrimer mediated transfers. MACs were also cleansed to more than 95% purity before transfer with an expensive technology. We present here a method by which MACs can be delivered into murine embryonic stem (ES) cells with a nonexpensive, less tedious, but still efficient way.


Asunto(s)
Cromosomas Artificiales de los Mamíferos/genética , Cromosomas Artificiales de los Mamíferos/metabolismo , Dendrímeros/metabolismo , Técnicas de Transferencia de Gen , Ingeniería Genética , Animales , Células CHO , Células Clonales , Cricetinae , Cricetulus , Resistencia a Medicamentos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Cariotipificación , Mitosis
19.
Methods Mol Biol ; 738: 161-81, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21431727

RESUMEN

Horizontal gene transfer or simply transgenic technology has evolved much since 1980. Gene delivery strategies, systems, and equipments have become more and more precise and efficient. It has also been shown that even chromosomes can be used besides traditional plasmid and viral vectors for zygote or embryonic stem cell transformation. Artificial chromosomes and their loadable variants have brought their advantages over traditional genetic information carriers into the field of transgenesis. Engineered chromosomes are appealing vectors for gene transfer since they have large transgene carrying capacity, they are non-integrating, and stably expressing in eukaryotic cells. Embryonic stem cell lines can be established that carry engineered chromosomes and ultimately used in transgenic mouse chimera creation. The demonstrated protocol describes all the steps necessary for the successful production of transgenic mouse chimeras with engineered chromosome bearer embryonic stem cells.


Asunto(s)
Quimera/genética , Cromosomas Artificiales de los Mamíferos/genética , Ingeniería Genética , Ratones Transgénicos/genética , Animales , Blastocisto/citología , Blastocisto/metabolismo , Cruzamiento , Transferencia de Embrión , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Técnicas de Transferencia de Gen , Inyecciones , Masculino , Ratones , Ratones Endogámicos C57BL , Mórula/citología , Mórula/metabolismo , Agujas , Transformación Genética , Zona Pelúcida/metabolismo
20.
Methods Mol Biol ; 738: 183-98, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21431728

RESUMEN

Current transgenic technologies for gene transfer into the germline of mammals cause a random integration of exogenous naked DNA into the host genome that can generate undesirable position effects as well as insertional mutations. The vectors used to generate transgenic animals are limited by the amount of foreign DNA they can carry. Mammalian artificial chromosomes have large DNA-carrying capacity and ability to replicate in parallel with, but without integration into, the host genome. Hence they are attractive vectors for transgenesis, cellular protein production, and gene therapy applications as well. ES cells mediated chromosome transfer by conventional blastocyst injection has a limitation in unpredictable germline transmission. The demonstrated protocol of laser-assisted microinjection of artificial chromosome containing ES cells into eight-cell mouse embryos protocol described here can solve the problem for faster production of germline transchromosomic mice.


Asunto(s)
Cromosomas Artificiales de los Mamíferos/genética , Técnicas de Transferencia de Gen , Ingeniería Genética , Rayos Láser , Trasplante de Células Madre , Células Madre/metabolismo , Animales , Cruzamiento , Línea Celular , Células Clonales/citología , Células Clonales/metabolismo , Transferencia de Embrión , Femenino , Inyecciones , Masculino , Ratones , Ratones Transgénicos , Agujas , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA