Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37444529

RESUMEN

Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-30% of breast cancers but has low expression in normal tissue, making it attractive for targeted alpha therapy (TAT). HER2-positive breast cancer typically metastasizes to bone, resulting in incurable disease and significant morbidity and mortality. Therefore, new strategies for HER2-targeting therapy are needed. Here, we present the preclinical in vitro and in vivo characterization of the HER2-targeted thorium-227 conjugate (HER2-TTC) TAT in various HER2-positive cancer models. In vitro, HER2-TTC showed potent cytotoxicity in various HER2-expressing cancer cell lines and increased DNA double strand break formation and the induction of cell cycle arrest in BT-474 cells. In vivo, HER2-TTC demonstrated dose-dependent antitumor efficacy in subcutaneous xenograft models. Notably, HER2-TTC also inhibited intratibial tumor growth and tumor-induced abnormal bone formation in an intratibial BT-474 mouse model that mimics breast cancer metastasized to bone. Furthermore, a match in HER2 expression levels between primary breast tumor and matched bone metastases samples from breast cancer patients was observed. These results demonstrate proof-of-concept for TAT in the treatment of patients with HER2-positive breast cancer, including cases where the tumor has metastasized to bone.

2.
Biochim Biophys Acta Biomembr ; 1863(8): 183616, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33872576

RESUMEN

Aquaporin-4 (AQP4) water channels and gap junction proteins (connexins) are two classes of astrocytic membrane proteins critically involved in brain water and ion homeostasis. AQP4 channels are anchored by α1-syntrophin to the perivascular astrocytic endfoot membrane domains where they control water flux at the blood-brain interface while connexins cluster at the lateral aspects of the astrocytic endfeet forming gap junctions that allow water and ions to dissipate through the astrocyte syncytium. Recent studies have pointed to an interdependence between astrocytic AQP4 and astrocytic gap junctions but the underlying mechanism remains to be explored. Here we use a novel transgenic mouse line to unravel whether ß1-syntrophin (coexpressed with α1-syntrophin in astrocytic plasma membranes) is implicated in the expression of AQP4 isoforms and formation of gap junctions in brain. Our results show that while the effect of ß1-syntrophin deletion is rather limited, double knockout of α1- and ß1-syntrophin causes a downregulation of the novel AQP4 isoform AQP4ex and an increase in the number of astrocytic gap junctions. The present study highlight the importance of syntrophins in orchestrating specialized functional domains of brain astrocytes.


Asunto(s)
Acuaporina 4/genética , Encéfalo/metabolismo , Proteínas de Unión al Calcio/genética , Conexina 43/genética , Proteínas Asociadas a la Distrofina/genética , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Animales , Membrana Celular/genética , Uniones Comunicantes/genética , Regulación de la Expresión Génica/genética , Homeostasis/genética , Iones/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos/genética , Ratones Transgénicos/metabolismo , Agua/metabolismo
3.
Mol Brain ; 13(1): 40, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32178707

RESUMEN

Retinal Müller cells are highly polarized macroglial cells with accumulation of the aquaporin-4 (AQP4) water channel and the inwardly rectifying potassium channel Kir4.1 at specialized endfoot membrane domains abutting microvessels and corpus vitreum. Proper water and potassium homeostasis in retina depends on these membrane specializations. Here we show that targeted deletion of ß1-syntrophin leads to a partial loss of AQP4 from perivascular Müller cell endfeet and that a concomitant deletion of both α1- and ß1-syntrophin causes a near complete loss of AQP4 from both perivascular and subvitreal endfoot membranes. α1-syntrophin is normally very weakly expressed in Müller cell endfeet but ß1-syntrophin knockout mice display an increased amount of α1-syntrophin at these sites. We suggest that upregulation of perivascular α1-syntrophin restricts the effect of ß1-syntrophin deletion. The present findings indicate that ß1-syntrophin plays an important role in maintaining the functional polarity of Müller cells and that α1-syntrophin can partially substitute for ß1-syntrophin in AQP4 anchoring. Functional polarization of Müller cells thus depends on an interplay between two syntrophin isoforms.


Asunto(s)
Proteínas Asociadas a la Distrofina/metabolismo , Células Ependimogliales/metabolismo , Retina/citología , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Eliminación de Gen , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/ultraestructura
4.
Cells ; 9(2)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046059

RESUMEN

The water channel protein aquaporin-4 (AQP4) and the gap junction forming proteins connexin-43 (Cx43) and connexin-30 (Cx30) are astrocytic proteins critically involved in brain water and ion homeostasis. While AQP4 is mainly involved in water flux across the astrocytic endfeet membranes, astrocytic gap junctions provide syncytial coupling allowing intercellular exchange of water, ions, and other molecules. We have previously shown that mice with targeted deletion of Aqp4 display enhanced gap junctional coupling between astrocytes. Here, we investigate whether uncoupling of the astrocytic syncytium by deletion of the astrocytic connexins Cx43 and Cx30 affects AQP4 membrane localization and expression. By using quantitative immunogold cytochemistry, we show that deletion of astrocytic connexins leads to a substantial reduction of perivascular AQP4, concomitant with a down-regulation of total AQP4 protein and mRNA. Isoform expression analysis shows that while the level of the predominant AQP4 M23 isoform is reduced in Cx43/Cx30 double deficient hippocampal astrocytes, the levels of M1, and the alternative translation AQP4ex isoform protein levels are increased. These findings reveal a complex interdependence between AQP4 and connexins, which are both significantly involved in homeostatic functions and astrogliopathologies.


Asunto(s)
Acuaporina 4/metabolismo , Astrocitos/metabolismo , Células Gigantes/metabolismo , Animales , Acuaporina 4/genética , Proteínas de Unión al Calcio/metabolismo , Conexinas/metabolismo , Eliminación de Gen , Hipocampo/metabolismo , Hipocampo/ultraestructura , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Glia ; 67(6): 1138-1149, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30803043

RESUMEN

Proper function of the retina depends heavily on a specialized form of retinal glia called Müller cells. These cells carry out important homeostatic functions that are contingent on their polarized nature. Specifically, the Müller cell endfeet that contact retinal microvessels and the corpus vitreum show a tenfold higher concentration of the inwardly rectifying potassium channel Kir 4.1 than other Müller cell plasma membrane domains. This highly selective enrichment of Kir 4.1 allows K+ to be siphoned through endfoot membranes in a special form of spatial buffering. Here, we show that Kir 4.1 is enriched in endfoot membranes through an interaction with ß1-syntrophin. Targeted disruption of this syntrophin caused a loss of Kir 4.1 from Müller cell endfeet without affecting the total level of Kir 4.1 expression in the retina. Targeted disruption of α1-syntrophin had no effect on Kir 4.1 localization. Our findings show that the Kir 4.1 aggregation that forms the basis for K+ siphoning depends on a specific syntrophin isoform that colocalizes with Kir 4.1 in Müller endfoot membranes.


Asunto(s)
Proteínas Asociadas a la Distrofina/deficiencia , Células Ependimogliales/metabolismo , Eliminación de Gen , Canales de Potasio de Rectificación Interna/deficiencia , Retina/metabolismo , Animales , Proteínas Asociadas a la Distrofina/genética , Células Ependimogliales/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio de Rectificación Interna/genética , Agregado de Proteínas/fisiología , Retina/patología
6.
Brain Struct Funct ; 222(9): 3959-3972, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28551776

RESUMEN

Aquaporin-4 (AQP4) is the predominant water channel in the brain and is expressed in high density in astrocytes. By fluxing water along osmotic gradients, AQP4 contributes to brain volume and ion homeostasis. Here we ask whether deletion of Aqp4 leads to upregulation of the gap junctional proteins connexin-43 (Cx43) and connexin-30 (Cx30). These molecules couple adjacent astrocytes to each other and allow water and ions to redistribute within the astrocyte syncytium. Immunogold analysis of parietal cortex and hippocampus showed that the number of gap junctions per capillary profile is increased in AQP4 knockout (AQP4 KO) mice. The most pronounced changes were observed for Cx43 in hippocampus where the number of connexin labeled gap junctions increased by 100% following AQP4 KO. Western blot analysis of whole tissue homogenates showed no change in the amount of Cx43 or Cx30 protein after AQP4 KO. However, AQP4 KO led to a significant increase in the amount of Cx43 in a Triton X-100 insoluble fraction. This fraction is associated with connexin assembly into gap junctional plaques in the plasma membrane. In line with our immunoblot data, RT-qPCR showed no significant increase in Cx43 and Cx30 mRNA levels after AQP4 KO. Our findings suggest that AQP4 KO leads to increased aggregation of Cx43 into gap junctions and provide a putative mechanistic basis for the enhanced tracer coupling in hippocampi of AQP4 KO mice. The increased number of gap junctions in AQP4 deficient mice may explain why Aqp4 deletion has rather modest effects on brain volume and K+ homeostasis.


Asunto(s)
Acuaporina 4/deficiencia , Astrocitos/metabolismo , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica/genética , Adenosina Trifosfatasas/metabolismo , Animales , Acuaporina 4/genética , Astrocitos/ultraestructura , Encéfalo/metabolismo , Encéfalo/ultraestructura , Conexina 30/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/ultraestructura , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microscopía Inmunoelectrónica
7.
Neurosci Lett ; 506(2): 245-50, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22119000

RESUMEN

Estrogen was shown to promote neuronal survival against several neurotoxic insults including ß-amyloid (Aß). The proposed mechanism includes the activation of the mitogen activated protein kinase/extracellular signal-regulated kinase (Mapk/Erk), phosphatidylinositol 3-kinase/Akt pathways and the upregulation of antiapoptotic proteins. On the other hand, Aß neurotoxicity depends on the activation of apoptosis signal-regulating kinase 1 (Ask1), and both Ask1 activity and Aß toxicity are inhibited by thioredoxin-1 (Trx1). Here, we explored the possibility that estrogen could protect cells against Aß(1-42) toxicity by inhibiting the Ask1 cascade or by modulating Trx1. Cytosolic translocation of death-associated protein Daxx was used as indicator of Ask1 activity. Using human SH-SY5Y neuroblastoma cells, 17ß-estradiol (E2) and specific agonists for estrogen receptor (ER) α or ß we demonstrated that nM concentrations of E2 protected against Aß(1-42) by a mechanism depending upon ERα stimulation, Akt activation and Ask1 inhibition. Moreover, this protection would occur independently of ERß and the induction of Trx1 expression. Our results emphasize the importance of Ask1 cascade in Aß toxicity, and of ERα and Ask1 as targets for developing new neuroprotective drugs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Péptidos beta-Amiloides/toxicidad , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas Nucleares/genética , Línea Celular Tumoral , Proteínas Co-Represoras , Humanos , Inmunohistoquímica , Chaperonas Moleculares , Fármacos Neuroprotectores/farmacología , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...