Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Chem Lab Med ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38738903

RESUMEN

OBJECTIVES: Heparin is a highly charged polysaccharide used as an anticoagulant to prevent blood coagulation in patients with presumed myocardial infarction and to prepare heparin plasma samples for laboratory tests. There are conflicting data regarding the effects of heparin on the measurement of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT), which are used for the immunodiagnosis of acute myocardial infarction. In this study, we investigated the influence of heparin on the immunodetection of human cardiac troponins. METHODS: Gel filtration (GF) techniques and sandwich fluoroimmunoassay were performed. The regions of сTnI and cTnT that are affected by heparin were investigated with a panel of anti-cTnI and anti-cTnT monoclonal antibodies, specific to different epitopes. RESULTS: Heparin was shown to bind to the human cardiac full-size ternary troponin complex (ITC-complex) and free cTnT, which increased their apparent molecular weights in GF studies. Heparin did not bind to the low molecular weight ITC-complex and to binary cTnI-troponin С complex. We did not detect any sites on cTnI in the ITC-complex that were specifically affected by heparin. In contrast, cTnT regions limited to approximately 69-99, 119-138 and 145-164 amino acid residues (aar) in the ITC-complex and a region that lies approximately between 236 and 255 aar of free cTnT were prone to heparin influence. CONCLUSIONS: Heparin binds to the ITC-complex via cTnT, interacting with several sites on the N-terminal and/or central parts of the cTnT molecule, which might influence the immunodetection of analytes in human blood.

2.
Free Radic Biol Med ; 211: 145-157, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043869

RESUMEN

It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.


Asunto(s)
Peróxido de Hidrógeno , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Peróxido de Hidrógeno/metabolismo , Mioglobina , Troponina T/metabolismo , Hipoxia de la Célula , Hipoxia/metabolismo , Oxidación-Reducción , Isoformas de Proteínas/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569730

RESUMEN

We characterized a novel genetic variant c.292G > A (p.E98K) in the TPM1 gene encoding cardiac tropomyosin 1.1 isoform (Tpm1.1), found in a proband with a phenotype of complex cardiomyopathy with conduction dysfunction and slow progressive neuromuscular involvement. To understand the molecular mechanism by which this mutation impairs cardiac function, we produced recombinant Tpm1.1 carrying an E98K substitution and studied how this substitution affects the structure of the Tpm1.1 molecule and its functional properties. The results showed that the E98K substitution in the N-terminal part of the Tpm molecule significantly destabilizes the C-terminal part of Tpm, thus indicating a long-distance destabilizing effect of the substitution on the Tpm coiled-coil structure. The E98K substitution did not noticeably affect Tpm's affinity for F-actin but significantly impaired Tpm's regulatory properties. It increased the Ca2+ sensitivity of the sliding velocity of regulated thin filaments over cardiac myosin in an in vitro motility assay and caused an incomplete block of the thin filament sliding at low Ca2+ concentrations. The incomplete motility block in the absence of Ca2+ can be explained by the loosening of the Tpm interaction with troponin I (TnI), thus increasing Tpm mobility on the surface of an actin filament that partially unlocks the myosin binding sites. This hypothesis is supported by the molecular dynamics (MD) simulation that showed that the E98 Tpm residue is involved in hydrogen bonding with the C-terminal part of TnI. Thus, the results allowed us to explain the mechanism by which the E98K Tpm mutation impairs sarcomeric function and myocardial relaxation.


Asunto(s)
Cardiomiopatías , Tropomiosina , Humanos , Tropomiosina/metabolismo , Miocardio/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Mutación , Calcio/metabolismo
4.
Clin Chim Acta ; 542: 117281, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36918061

RESUMEN

BACKGROUND: Blood measurement of cardiac troponin T (cTnT) is one of the most widespread methods of acute myocardial infarction (MI) diagnosis. cTnT degradation may have a significant influence on the precision of cTnT immunodetection; however, there are no consistent data describing the level and sites of cTnT proteolysis in the blood of MI patients. In this study, we bordered major cTnT fragments and quantified their relative abundance in the blood at different times after MI. METHODS: Serial heparin plasma samples were collected from 37 MI patients 2-37 h following the onset of MI. cTnT and its fragments were studied by western blotting and immunofluorescence analysis using monoclonal antibodies specific to various cTnT epitopes. RESULTS: cTnT was present in the blood of MI patients as 23 proteolytic fragments with an apparent molecular mass of âˆ¼ 8-37 kDa. Two major sites of cTnT degradation were identified: between amino acid residues (aar) 68 and 69 and between aar 189 and 223. Analysis of the abundance of cTnT fragments showed an increase in the fraction of free central fragments in the first few hours after MI, while the fraction of the C-terminal fragments of cTnT remained almost unchanged. CONCLUSION: cTnT progressively degrades after MI and appears in the blood as a mixture of 23 proteolytic fragments. The cTnT region approximately bordered by aar 69-158 is a promising target for antibodies used for measurement of total cTnT.


Asunto(s)
Infarto del Miocardio , Troponina T , Humanos , Western Blotting , Proteolisis , Heparina , Biomarcadores
5.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36555368

RESUMEN

Tropomyosin (Tpm) mutations cause inherited cardiac diseases such as hypertrophic and dilated cardiomyopathies. We applied various approaches to investigate the role of cardiac troponin (Tn) and especially the troponin T (TnT) in the pathogenic effects of Tpm cardiomyopathy-associated mutations M8R, K15N, A277V, M281T, and I284V located in the overlap junction of neighboring Tpm dimers. Using co-sedimentation assay and viscosity measurements, we showed that TnT1 (fragment of TnT) stabilizes the overlap junction of Tpm WT and all Tpm mutants studied except Tpm M8R. However, isothermal titration calorimetry (ITC) indicated that TnT1 binds Tpm WT and all Tpm mutants similarly. By using ITC, we measured the direct KD of the Tpm overlap region, N-end, and C-end binding to TnT1. The ITC data revealed that the Tpm C-end binds to TnT1 independently from the N-end, while N-end does not bind. Therefore, we suppose that Tpm M8R binds to TnT1 without forming the overlap junction. We also demonstrated the possible role of Tn isoform composition in the cardiomyopathy development caused by M8R mutation. TnT1 dose-dependently reduced the velocity of F-actin-Tpm filaments containing Tpm WT, Tpm A277V, and Tpm M281T mutants in an in vitro motility assay. All mutations impaired the calcium regulation of the actin-myosin interaction. The M281T and I284V mutations increased the calcium sensitivity, while the K15N and A277V mutations reduced it. The Tpm M8R, M281T, and I284V mutations under-inhibited the velocity at low calcium concentrations. Our results demonstrate that Tpm mutations likely implement their pathogenic effects through Tpm interaction with Tn, cardiac myosin, or other protein partners.


Asunto(s)
Cardiomiopatías , Tropomiosina , Troponina , Humanos , Actinas/metabolismo , Calcio/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Mutación , Tropomiosina/genética , Troponina/genética , Troponina T/metabolismo
6.
Biochemistry (Mosc) ; 86(11): 1395-1406, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34906040

RESUMEN

Cardiovascular diseases (CVD) are among the leading causes of death and disability worldwide. Pregnancy-associated plasma protein-A (PAPP-A) is a matrix metalloprotease localized on the cell surface. One of the substrates that PAPP-A cleaves is the insulin-like growth factor binding protein-4 (IGFBP-4), a member of the family of proteins that bind insulin-like growth factor (IGF). Proteolysis of IGFBP-4 by PAPP-A occurs at a specific site resulting in formation of two proteolytic fragments - N-terminal IGFBP-4 (NT-IGFBP-4) and C-terminal IGFBP-4 (CT-IGFBP-4), and leads to the release of IGF activating various cellular processes including migration, proliferation, and cell growth. Increased levels of the proteolytic IGFBP-4 fragments correlate with the development of CVD complications and increased risk of death in patients with the coronary heart disease, acute coronary syndrome, and heart failure. However, there is no direct evidence that PAPP-A specifically cleaves IGFBP-4 in the cardiac tissue under normal and pathological conditions. In the present study, using a primary culture of rat neonatal cardiomyocytes as a model, we have demonstrated that: 1) proteolysis of IGFBP-4 by PAPP-A occurs in the conditioned medium of cardiomyocytes, 2) PAPP-A-specific IGFBP-4 proteolysis is increased when cardiomyocytes are transformed to a hypertrophic state. Thus, it can be assumed that the enhancement of IGFBP-4 cleavage by PAPP-A and hypertrophic changes in cardiomyocytes accompanying CVD are interrelated, and PAPP-A appears to be one of the activators of the IGF-dependent processes in normal and hypertrophic-state cardiomyocytes.


Asunto(s)
Cardiomegalia/enzimología , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Miocitos Cardíacos/enzimología , Proteína Plasmática A Asociada al Embarazo/metabolismo , Proteolisis , Animales , Animales Recién Nacidos , Cardiomegalia/patología , Células Cultivadas , Miocitos Cardíacos/patología , Ratas
7.
Clin Chem ; 67(1): 124-130, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33418589

RESUMEN

BACKGROUND: Cardiac troponin I (cTnI) and cTnT are the established biomarkers of cardiomyocyte damage and the recommended biomarkers for the diagnosis of acute myocardial infarction (MI). High-sensitivity immunochemical diagnostic systems are able to measure the cTn concentrations in the blood of a majority of healthy people. At the same time, the concentration of cTn may be increased not only after MI but also because of other pathologies that might affect myocardium. This effect reduces the clinical specificity of cTn for MI and may complicate the diagnosis. CONTENT: This review summarizes the existing information regarding the causes and mechanisms that lead to the increase of cTn concentration in blood and the forms of cTn that are present in circulation after MI or other types of myocardial injury. SUMMARY: Different etiologies of disease associated with increases of cTn above the 99th percentile and various mechanisms of troponin release from myocardium could result in the appearance of different forms of cTn in blood and provide the first clinical evidence of injury. Additional research is needed for the careful characterization of cTn forms that are present in the blood in different clinical settings. That knowledge may lead to the development of immunochemical systems that would differentiate certain forms of troponins and possibly certain types of cardiac disease.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo , Animales , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/fisiopatología , Corazón/fisiopatología , Humanos , Troponina I/sangre , Troponina T/sangre
8.
Clin Chem ; 65(7): 882-892, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30858159

RESUMEN

BACKGROUND: The measurement of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) is widely used for the diagnosis of acute myocardial infarction (AMI). However, there are conflicting data regarding what forms of cTnI and cTnT are present in the blood of AMI patients. We investigated cTnI and cTnT as components of troponin complexes in the blood of AMI patients. METHODS: Gel filtration techniques, sandwich fluoroimmunoassays, and Western blotting were used. RESULTS: Plasma samples from patients with AMI contained the following troponin complexes: (a) a cTnI-cTnT-TnC complex (ITC) composed of full-size cTnT of 37 kDa or its 29-kDa fragment and full-size cTnI of 29 kDa or its 27-kDa fragments; (b) ITC with lower molecular weight (LMW-ITC) in which cTnT was truncated to the 14-kDa C-terminal fragments; and (c) a binary cTnI-cTnC complex composed of truncated cTnI of approximately 14 kDa. During the progression of the disease, the amount of ITC in AMI samples decreased, whereas the amounts of LMW-ITC and short 16- to 20-kDa cTnT central fragments increased. Almost all full-size cTnT and a 29-kDa cTnT fragment in AMI plasma samples were the components of ITC. No free full-size cTnT was found in AMI plasma samples. Only 16- to 27-kDa central fragments of cTnT were present in a free form in patient blood. CONCLUSIONS: A ternary troponin complex exists in 2 forms in the blood of patients with AMI: full-size ITC and LMW-ITC. The binary cTnI-cTnC complex and free cTnT fragments are also present in patient blood.


Asunto(s)
Infarto del Miocardio/sangre , Troponina I/sangre , Troponina T/sangre , Enfermedad Aguda , Adulto , Humanos
9.
Clin Chem ; 64(7): 1104-1112, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29632125

RESUMEN

BACKGROUND: In the blood of patients with acute myocardial infarction (AMI), cardiac troponin I (cTnI) presents as an intact molecule with a repertoire of proteolytic fragments. The degradation of cTnI might negatively influence its precise immunodetection. In this study we identified cTnI fragments and calculated their ratio in the blood of patients at different times after AMI to discriminate the most stable part(s) of cTnI. METHODS: Serial serum samples were collected from AMI patients within 1 to 36 h after the onset of chest pain both before and after stenting. cTnI and its fragments were immunoextracted from serum samples and analyzed by Western blotting with monoclonal antibodies (mAbs) specific to the different epitopes of cTnI and by 2 in-house immunoassays specific to the central and terminal portions of cTnI. RESULTS: Intact cTnI and its 11 major fragments were detected in blood of AMI patients. The ratio of the fragments in serial samples did not show large changes in the period 1-36 h after AMI. mAbs specific to the epitopes located approximately between amino acid residues (aar) 34 and 126 stained all extracted cTnI. mAbs specific to aar 23-36 and 126-196 recognized approximately 80% to 90% (by abundance) of cTnI. CONCLUSIONS: In addition to mAbs specific to the central part of cTnI (approximately aar 34-126), antibodies specific to the adjacent epitopes (approximately aar 23-36 and 126-196) could be used in assays because they recognize ≥80% of cTnI in patients' blood samples within the first 36 h after AMI.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Inmunoensayo/métodos , Infarto del Miocardio/sangre , Troponina I/sangre , Troponina I/inmunología , Western Blotting , Angiografía Coronaria , Humanos , Proteolisis , Stents
10.
11.
Clin Chem ; 63(6): 1094-1100, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28428352

RESUMEN

BACKGROUND: Cardiac troponin T (cTnT) is an acknowledged biomarker of acute myocardial infarction (AMI) that is known to be prone to proteolytic degradation in serum. Such degradation is usually explained by the action of µ-calpain, although there could be other candidates for that role. In the current study, we explored the hypothesis that thrombin-mediated cTnT cleavage occurs as a result of the serum sample preparation. METHODS: cTnT degradation was studied by using immunoblotting and mass spectrometry (MS) analysis. RESULTS: The comparison of cTnT isolated from AMI heparin plasma and serum samples showed that cTnT in the plasma samples was mainly present as the full-sized molecule (approximately 35 kDa), while in serum samples it was present as a 29-kDa fragment. The incubation of recombinant cTnT, or native ternary cardiac troponin complex with thrombin or in normal human serum (NHS), resulted in the formation of a 29-kDa product that was similar to that detected in AMI serum samples. No cTnT degradation was observed when thrombin or NHS was pretreated with hirudin, a specific inhibitor of thrombin, or during incubation of troponin in normal heparin plasma. When the products of thrombin-mediated cTnT proteolysis were analyzed by MS, 2 fragments consisting of amino acid residues (aar) 2-68 and 69-288 were identified, which suggests that thrombin cleaves cTnT between R68 and S69. CONCLUSIONS: The results of this study suggest that the 29-kDa fragment of cTnT in AMI serum samples mainly appears due to the cleavage by thrombin during serum sample preparation.


Asunto(s)
Trombina/metabolismo , Troponina T/metabolismo , Enfermedad Aguda , Biomarcadores/sangre , Biomarcadores/metabolismo , Humanos , Immunoblotting , Espectrometría de Masas , Infarto del Miocardio/sangre , Infarto del Miocardio/metabolismo , Troponina T/sangre
12.
Clin Chem ; 63(1): 343-350, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27815308

RESUMEN

BACKGROUND: Autoantibodies to cardiac troponins (TnAAbs) could negatively affect cardiac troponin I (cTnI) measurements by TnAAbs-sensitive immunoassays. We investigated the epitope specificity of TnAAbs and its influence on cTnI immunodetection in patients with acute myocardial infarction (AMI). METHODS: The specificity of TnAAbs was studied in immunoassays and gel-filtration experiments. The influence of TnAAbs on endogenous troponin measurements was studied in 35 plasma samples from 15 patients with AMI. RESULTS: The inhibitory effect of TnAAbs on the cTnI immunodetection was observed only for the ternary cardiac troponin complex (I-T-C) and not for the binary cardiac troponin complex (I-C) or free cTnI. In the same TnAAbs-containing samples, the immunodetection of cardiac troponin T (cTnT) added in the form of I-T-C (but not free cTnT) was also inhibited in the assays that used monoclonal antibodies (mAbs) specific to the 223-242 epitope. The negative effects of TnAAbs on the measurements of endogenous cTnI in AMI samples were less than on the measurements of isolated I-T-C and decreased with time after the onset of symptoms. Early AMI blood samples might contain a mixture of the I-T-C and I-C complexes with the ratio gradually changing with the progression of the disease in favor of I-C. CONCLUSIONS: The investigated TnAAbs are specific to the structural epitopes formed by cTnI and cTnT molecules in the I-T-C complex. AMI blood samples contain a mixture of I-C and I-T-C complexes. The concentrations of total cTnI at the early stage of AMI could be underestimated in approximately 5%-10% of patients if measured by TnAAbs-sensitive immunoassays.


Asunto(s)
Autoanticuerpos/inmunología , Epítopos/inmunología , Infarto del Miocardio/inmunología , Troponina I/inmunología , Troponina T/inmunología , Enfermedad Aguda , Adulto , Reacciones Antígeno-Anticuerpo , Autoanticuerpos/sangre , Epítopos/sangre , Voluntarios Sanos , Humanos , Inmunoensayo , Persona de Mediana Edad , Infarto del Miocardio/sangre , Infarto del Miocardio/diagnóstico , Troponina I/sangre , Troponina T/sangre , Adulto Joven
15.
J Immunoassay Immunochem ; 34(2): 180-96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23537302

RESUMEN

Adiponectin (Adn) is a protein that circulates in the blood in several oligomeric forms, namely low-, medium-, and high-molecular-weight forms. Adn may serve as a risk factor for type 2 diabetes mellitus (T2DM). The aims of this work were (1) to produce monoclonal antibodies (MAbs) specific to different Adn oligomeric forms, (2) to design immunoassays suitable for measuring the Adn forms present in human blood, and (3) to investigate the changes in Adn forms that occur in patients with T2DM. Gel filtration, fluoroimmunoassays, and Western blotting were utilized as major techniques in this study. MAbs recognizing various oligomeric forms of Adn were obtained. Complexes between Adn and complement component C1q and between the low molecular weight form of Adn and albumin were described in human blood. A decrease in the total Adn and Adn-albumin complex levels in the blood of patients with T2DM and no difference in the levels of the Adn-C1q complex in comparison with healthy volunteers were demonstrated. An Adn94-Adn63 fluoroimmunoassay was selected as the technique that most accurately measured the mass ratio of Adn oligomers in blood samples, and an Adn214-Adn27 assay that measured the low-molecular-weight form of Adn only.


Asunto(s)
Adiponectina/sangre , Diabetes Mellitus Tipo 2/sangre , Inmunoconjugados/sangre , Adiponectina/química , Adulto , Anciano , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Estudios de Casos y Controles , Complemento C1q/química , Femenino , Humanos , Inmunoconjugados/química , Masculino , Ratones , Persona de Mediana Edad , Peso Molecular , Unión Proteica , Isoformas de Proteínas/sangre , Isoformas de Proteínas/química , Albúmina Sérica/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...