Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 5(1): eaau1532, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30746446

RESUMEN

Bacteria can exploit mechanics to display remarkable plasticity in response to locally changing physical and chemical conditions. Compliant structures play a notable role in their taxis behavior, specifically for navigation inside complex and structured environments. Bioinspired mechanisms with rationally designed architectures capable of large, nonlinear deformation present opportunities for introducing autonomy into engineered small-scale devices. This work analyzes the effect of hydrodynamic forces and rheology of local surroundings on swimming at low Reynolds number, identifies the challenges and benefits of using elastohydrodynamic coupling in locomotion, and further develops a suite of machinery for building untethered microrobots with self-regulated mobility. We demonstrate that coupling the structural and magnetic properties of artificial microswimmers with the dynamic properties of the fluid leads to adaptive locomotion in the absence of on-board sensors.

2.
Proc Natl Acad Sci U S A ; 106(28): 11594-9, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19553217

RESUMEN

Many cell-cell adhesive events are mediated by the dimerization of cadherin proteins presented on apposing cell surfaces. Cadherin-mediated processes play a central role in the sorting of cells into separate tissues in vivo, but in vitro assays aimed at mimicking this behavior have yielded inconclusive results. In some cases, cells that express different cadherins exhibit homotypic cell sorting, forming separate cell aggregates, whereas in other cases, intermixed aggregates are formed. A third pattern is observed for mixtures of cells expressing either N- or E-cadherin, which form distinct homotypic aggregates that adhere to one another through a heterotypic interface. The molecular basis of cadherin-mediated cell patterning phenomena is poorly understood, in part because the relationship between cellular adhesive specificity and intermolecular binding free energies has not been established. To clarify this issue, we have measured the dimerization affinities of N-cadherin and E-cadherin. These proteins are similar in sequence and structure, yet are able to mediate homotypic cell patterning behavior in a variety of tissues. N-cadherin is found to form homodimers with higher affinity than does E-cadherin and, unexpectedly, the N/E-cadherin heterophilic binding affinity is intermediate in strength between the 2 homophilic affinities. We can account for observed cell aggregation behaviors by using a theoretical framework that establishes a connection between molecular affinities and cell-cell adhesive specificity. Our results illustrate how graded differences between different homophilic and heterophilic cadherin dimerizaton affinities can result in homotypic cell patterning and, more generally, show how proteins that are closely related can, nevertheless, be responsible for highly specific cellular adhesive behavior.


Asunto(s)
Cadherinas/metabolismo , Adhesión Celular/fisiología , Dimerización , Modelos Moleculares , Unión Proteica , Animales , Área Bajo la Curva , Células CHO , Cadherinas/química , Agregación Celular/fisiología , Cricetinae , Cricetulus
3.
J Biol Chem ; 276(24): 21476-81, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11297556

RESUMEN

Binding of the U1A protein to its RNA target U1 hairpin II has been extensively studied as a model for a high affinity RNA/protein interaction. However, the mechanism and kinetics by which this complex is formed remain largely unknown. Here we use real-time biomolecular interaction analysis to dissect the roles various protein and RNA structural elements play in the formation of the U1A.U1 hairpin II complex. We show that neutralization of positive charges on the protein or increasing the salt concentration slows the association rate, suggesting that electrostatic interactions play an important role in bringing RNA and protein together. In contrast, removal of hydrogen bonding or stacking interactions within the RNA/protein interface, or reducing the size of the RNA loop, dramatically destabilizes the complex, as seen by a strong increase in the dissociation rate. Our data support a binding mechanism consisting of a rapid initial association based on electrostatic interactions and a subsequent locking step based on close-range interactions that occur during the induced fit of RNA and protein. Remarkably, these two steps can be clearly distinguished using U1A mutants containing single amino acid substitutions. Our observations explain the extraordinary affinity of U1A for its target and may suggest a general mechanism for high affinity RNA/protein interactions.


Asunto(s)
ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arginina , Secuencia de Bases , Sitios de Unión , Técnicas Biosensibles , Humanos , Enlace de Hidrógeno , Cinética , Lisina , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...