Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transpl Int ; 36: 10742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824295

RESUMEN

The present study investigated the effects of triiodothyronine (T3) administration in ex vivo model of rat heart normothermic perfusion. T3 is cardioprotective and has the potential to repair the injured myocardium. Isolated hearts were subjected to normothermic perfusion (NP) with Krebs-Henseleit for 4 h with vehicle (NP) or 60 nM T3 in the perfusate (NP + T3). Left ventricular end diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), perfusion pressure (PP) and percentage of change of these parameters from the baseline values were measured. Activation of stress induced kinase signaling was assessed in tissue samples. Baseline parameters were similar between groups. LVEDP was increased from the baseline by 13% (70) for NP + T3 vs. 139% (160) for NP group, p = 0.048. LVDP was reduced by 18.2% (5) for NP + T3 vs. 25.3% (19) for NP group, p = 0.01. PP was increased by 41% (19) for NP + T3 vs.91% (56) for NP group, p = 0.024. T3 increased activation of pro-survival Akt by 1.85 fold (p = 0.047) and AMPK by 2.25 fold (p = 0.01) and reduced activation of pro-apoptotic p38 MAPK by 3fold (p = 0.04) and p54 JNK by 4.0 fold (p = 0.04). Administration of T3 in normothermic perfusion had favorable effects on cardiac function and perfusion pressure and switched death to pro-survival kinase signaling.


Asunto(s)
Trasplante de Corazón , Corazón , Triyodotironina , Animales , Ratas , Corazón/efectos de los fármacos , Miocardio , Perfusión , Donantes de Tejidos , Técnicas In Vitro , Triyodotironina/farmacología
2.
J Biochem Mol Toxicol ; 36(8): e23099, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35593412

RESUMEN

Τhe natural history of type 2 diabetes mellitus is characterized by a progressive loss of pancreatic beta cell function and insulin resistance. Bisphenol A (BPA) is an endocrine-disrupting chemical that is used widely in industry; people are exposed to BPA and its products daily. Studies have delineated that BPA alters the function of pancreatic beta cells. Herein, we examined the effect of low doses of BPA on pancreatic beta cell viability and apoptosis and we tried to elucidate the mechanisms involved in these processes. Beta-TC-6 (ATCC® CRL-11506™) cells were cultured with a medium containing the following dilutions of BPA: 0.002, 0.02, 0.1, 0.2, 2 µΜ up to 72 h. We examined the viability and adenosine triphosphate (ATP) levels of cells. Then, we measured apoptosis, cell cycle, and insulin levels. We quantified the levels of proteins implicated in the mitochondrial pathway of apoptosis; and finally, we quantified the intracellular reactive oxygen species and mitochondrial superoxide. We found that the exposure of Beta-TC-6 cells to BPA results in a decrease in cell viability, ATP levels, and an increase in insulin levels. We found an increase in apoptosis levels and a decrease in cell cycle levels. In addition, we provide evidence of the levels of apoptotic proteins. Finally, we found an increase in the cellular reactive oxygen species and mitochondrial superoxide production. Exposure to low concentrations of BPA triggers the mitochondrial pathway of apoptosis via the generation of intracellular reactive oxygen species and mitochondrial superoxide on Beta-TC-6 cells in a dose-dependent way.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Insulinas , Adenosina Trifosfato/metabolismo , Apoptosis , Compuestos de Bencidrilo/toxicidad , Humanos , Células Secretoras de Insulina/metabolismo , Insulinas/farmacología , Fenoles , Especies Reactivas de Oxígeno/metabolismo , Superóxidos
3.
J Clin Med ; 10(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884213

RESUMEN

Background Rheumatoid Arthritis (RA) patients show a higher risk of heart failure. The present study investigated possible causes of cardiac dysfunction related to thyroid hormone (TH) signaling in a RA mouse model. Methods A TNF-driven mouse model of RA[TghuTNF (Tg197)] was used. Cardiac function was evaluated by echocardiography. SERCA2a and phospholamban protein levels in left ventricle (LV) tissue, thyroid hormone levels in serum, TH receptors in LV and TH-related kinase signaling pathways were measured. T3 hormone was administered in female Tg197 mice. Results We show LV and atrial dilatation with systolic dysfunction in Tg197 animals, accompanied by downregulated SERCA2a. We suggest an interaction of pro-inflammatory and thyroid hormone signaling indicated by increased p38 MAPK and downregulation of TRß1 receptor in Tg197 hearts. Interestingly, female Tg197 mice showed a worse cardiac phenotype related to reduced T3 levels and Akt activation. T3 supplementation increased Akt activation, restored SERCA2a expression and improved cardiac function in female Tg197 mice. Conclusions TNF overexpression of Tg197 mice results in cardiac dysfunction via p38 MAPK activation and downregulation of TRß1. Gender-specific reduction in T3 levels could cause the worse cardiac phenotype observed in female mice, while T3 administration improves cardiac function and calcium handling via modified Akt activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...