Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Res Sq ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38343831

RESUMEN

Microglia are resident immune cells of the brain and are implicated in the etiology of Alzheimer's Disease (AD) and other diseases. Yet the cellular and molecular processes regulating their function throughout the course of the disease are poorly understood. Here, we present the transcriptional landscape of primary microglia from 189 human postmortem brains, including 58 healthy aging individuals and 131 with a range of disease phenotypes, including 63 patients representing the full spectrum of clinical and pathological severity of AD. We identified transcriptional changes associated with multiple AD phenotypes, capturing the severity of dementia and neuropathological lesions. Transcript-level analyses identified additional genes with heterogeneous isoform usage and AD phenotypes. We identified changes in gene-gene coordination in AD, dysregulation of co-expression modules, and disease subtypes with distinct gene expression. Taken together, these data further our understanding of the key role of microglia in AD biology and nominate candidates for therapeutic intervention.

2.
Neuromolecular Med ; 25(3): 388-401, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37005977

RESUMEN

The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes' up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes' expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Regulación hacia Arriba , Esquizofrenia/genética , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo
4.
J Neurotrauma ; 40(5-6): 561-577, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36262047

RESUMEN

Chronic mental health problems are common among military veterans who sustained blast-related traumatic brain injuries. The reasons for this association remain unexplained. Male rats exposed to repetitive low-level blast overpressure (BOP) exposures exhibit chronic cognitive and post-traumatic stress disorder (PTSD)-related traits that develop in a delayed fashion. We examined blast-induced alterations on the transcriptome in four brain areas (anterior cortex, hippocampus, amygdala, and cerebellum) across the time frame over which the PTSD-related behavioral phenotype develops. When analyzed at 6 weeks or 12 months after blast exposure, relatively few differentially expressed genes (DEGs) were found. However, longitudinal analysis of amygdala, hippocampus, and anterior cortex between 6 weeks and 12 months revealed blast-specific DEG patterns. Six DEGs (hyaluronan and proteoglycan link protein 1 [Hapln1], glutamate metabotropic receptor 2 [Grm2], purinergic receptor P2y12 [P2ry12], C-C chemokine receptor type 5 [Ccr5], phenazine biosynthesis-like protein domain containing 1 [Pbld1], and cadherin related 23 [Cdh23]) were found altered in all three brain regions in blast-exposed animals. Pathway enrichment analysis using all DEGs or those uniquely changed revealed different transcription patterns in blast versus sham. In particular, the amygdala in blast-exposed animals had a unique set of enriched pathways related to stress responses, oxidative phosphorylation, and mitochondrial dysfunction. Upstream analysis implicated tumor necrosis factor (TNF)α signaling in blast-related effects in amygdala and anterior cortex. Eukaryotic initiating factor eIF4E (EIF4e), an upstream regulator of P2ry12 and Ccr5, was predicted to be activated in the amygdala. Quantitative polymerase chain reaction (qPCR) validated longitudinal changes in two TNFα regulated genes (cathepsin B [Ctsb], Hapln1), P2ry12, and Grm2. These studies have implications for understanding how blast injury damages the brain and implicates inflammation as a potential therapeutic target.


Asunto(s)
Traumatismos por Explosión , Lesiones Traumáticas del Encéfalo , Ratas , Masculino , Animales , Enfermedades Neuroinflamatorias , Factor 4E Eucariótico de Iniciación/metabolismo , Explosiones , Lesiones Traumáticas del Encéfalo/metabolismo , Traumatismos por Explosión/patología , Amígdala del Cerebelo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Elife ; 112022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36052994

RESUMEN

There is increasing evidence that anterior pituitary hormones, traditionally thought to have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone action on brain receptors in mediating central neural and peripheral somatic functions. Here, we have created the most comprehensive neuroanatomical atlas on the expression of TSHR, LHCGR, and FSHR. We have used RNAscope, a technology that allows the detection of mRNA at single-transcript level, together with protein level validation, to document Tshr expression in 173 and Fshr expression in 353 brain regions, nuclei and subnuclei identified using the Atlas for the Mouse Brain in Stereotaxic Coordinates. We also identified Lhcgr transcripts in 401 brain regions, nuclei and subnuclei. Complementarily, we used ViewRNA, another single-transcript detection technology, to establish the expression of FSHR in human brain samples, where transcripts were co-localized in MALAT1-positive neurons. In addition, we show high expression for all three receptors in the ventricular region-with yet unknown functions. Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. In contrast, Fshr was localized to NeuN-positive neurons in the granular layer of the dentate gyrus in murine and human brain-both are Alzheimer's disease-vulnerable regions. Our atlas thus provides a vital resource for scientists to explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors on somatic function. New actionable pathways for human disease may be unmasked through further studies.


Asunto(s)
Glicoproteínas , Células de Sertoli , Animales , Encéfalo , Hormonas , Humanos , Masculino , Ratones , Testículo/fisiología
6.
Nature ; 603(7901): 470-476, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236988

RESUMEN

Alzheimer's disease has a higher incidence in older women, with a spike in cognitive decline that tracks with visceral adiposity, dysregulated energy homeostasis and bone loss during the menopausal transition1,2. Inhibiting the action of follicle-stimulating hormone (FSH) reduces body fat, enhances thermogenesis, increases bone mass and lowers serum cholesterol in mice3-7. Here we show that FSH acts directly on hippocampal and cortical neurons to accelerate amyloid-ß and Tau deposition and impair cognition in mice displaying features of Alzheimer's disease. Blocking FSH action in these mice abrogates the Alzheimer's disease-like phenotype by inhibiting the neuronal C/EBPß-δ-secretase pathway. These data not only suggest a causal role for rising serum FSH levels in the exaggerated Alzheimer's disease pathophysiology during menopause, but also reveal an opportunity for treating Alzheimer's disease, obesity, osteoporosis and dyslipidaemia with a single FSH-blocking agent.


Asunto(s)
Enfermedad de Alzheimer , Hormona Folículo Estimulante , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Densidad Ósea , Cognición , Femenino , Hormona Folículo Estimulante/metabolismo , Humanos , Ratones , Termogénesis
7.
Alzheimers Dement ; 18(7): 1357-1369, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34758195

RESUMEN

INTRODUCTION: Molecular responses in the brains of persons with mild cognitive impairment (MCI), the earliest transitional state between normal aging and early Alzheimer's disease (AD), are poorly understood. METHODS: We examined AD-related neuropathology and transcriptome changes in the neocortex of individuals with MCI relative to controls and temporal responses to the mild hypoxia in mouse brains. RESULTS: Subsets of vascular early response to hypoxia genes were upregulated in MCI prior to the buildup of AD neuropathology. Early activation of pro-angiogenic hypoxia-inducible factor signaling in response to mild hypoxia was detected in mouse brains similar to those that were altered in MCI. Protracted responses to hypoxia were characterized by activation of phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt)-the mammalian target of rapamycin (mTOR) pathways in brain microvessel isolates. DISCUSSION: These findings suggest that cerebrovascular remodeling is an important antecedent to the development of dementia and a component of the homeostatic response to reduced oxygen tension in aging prior to the onset of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Neocórtex , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores , Disfunción Cognitiva/patología , Hipoxia , Ratones , Neocórtex/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas tau/metabolismo
8.
Sci Adv ; 7(2)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523961

RESUMEN

Alzheimer's disease (AD), the most common form of dementia, is recognized as a heterogeneous disease with diverse pathophysiologic mechanisms. In this study, we interrogate the molecular heterogeneity of AD by analyzing 1543 transcriptomes across five brain regions in two AD cohorts using an integrative network approach. We identify three major molecular subtypes of AD corresponding to different combinations of multiple dysregulated pathways, such as susceptibility to tau-mediated neurodegeneration, amyloid-ß neuroinflammation, synaptic signaling, immune activity, mitochondria organization, and myelination. Multiscale network analysis reveals subtype-specific drivers such as GABRB2, LRP10, MSN, PLP1, and ATP6V1A We further demonstrate that variations between existing AD mouse models recapitulate a certain degree of subtype heterogeneity, which may partially explain why a vast majority of drugs that succeeded in specific mouse models do not align with generalized human trials across all AD subtypes. Therefore, subtyping patients with AD is a critical step toward precision medicine for this devastating disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Ratones , ARN/metabolismo , Análisis de Secuencia de ARN , Proteínas tau/metabolismo
9.
Neuron ; 109(2): 257-272.e14, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33238137

RESUMEN

To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer's Disease (LOAD), we performed an integrative network analysis of multi-omics profiling of four cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked neuronal subnetwork, and its role in disease-related processes was evaluated through CRISPR-based manipulation in human induced pluripotent stem cell-derived neurons and RNAi-based knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by ATP6V1A deficit were improved by a repositioned compound, NCH-51. This study provides not only a global landscape but also detailed signaling circuits of complex molecular interactions in key brain regions affected by LOAD, and the resulting network models will serve as a blueprint for developing next-generation therapeutic agents against LOAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Encéfalo/fisiología , Bases de Datos Genéticas , Redes Reguladoras de Genes/fisiología , Transducción de Señal/fisiología , Enfermedad de Alzheimer/patología , Animales , Animales Modificados Genéticamente , Encéfalo/patología , Bases de Datos Genéticas/tendencias , Drosophila melanogaster , Femenino , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Análisis de Secuencia de ARN/métodos
10.
Eur J Neurosci ; 53(12): 3960-3987, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33070392

RESUMEN

Growing evidence points to a critical involvement of the extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Decreases of perineuronal nets (PNNs) and altered expression of chondroitin sulphate proteoglycans (CSPGs) in glial cells have been identified in several brain regions. GWAS data have identified several SZ vulnerability variants of genes encoding for ECM molecules. Given the potential relevance of ECM functions to the pathophysiology of this disorder, it is necessary to understand the extent of ECM changes across brain regions, their region- and sex-specificity and which ECM components contribute to these changes. We tested the hypothesis that the expression of genes encoding for ECM molecules may be broadly disrupted in SZ across several cortical and subcortical brain regions and include key ECM components as well as factors such as ECM posttranslational modifications and regulator factors. Gene expression profiling of 14 neocortical brain regions, caudate, putamen and hippocampus from control subjects (n = 14/region) and subjects with SZ (n = 16/region) was conducted using Affymetrix microarray analysis. Analysis across brain regions revealed widespread dysregulation of ECM gene expression in cortical and subcortical brain regions in SZ, impacting several ECM functional key components. SRGN, CD44, ADAMTS1, ADAM10, BCAN, NCAN and SEMA4G showed some of the most robust changes. Region-, sex- and age-specific gene expression patterns and correlation with cognitive scores were also detected. Taken together, these findings contribute to emerging evidence for large-scale ECM dysregulation in SZ and point to molecular pathways involved in PNN decreases, glial cell dysfunction and cognitive impairment in SZ.


Asunto(s)
Esquizofrenia , Encéfalo/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Matriz Extracelular/metabolismo , Humanos , Neuroglía/metabolismo , Esquizofrenia/genética
11.
Schizophr Bull ; 47(3): 785-795, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33141894

RESUMEN

BACKGROUND: The main challenge in the study of schizophrenia is its high heterogeneity. While it is generally accepted that there exist several biological mechanisms that may define distinct schizophrenia subtypes, they have not been identified yet. We performed comprehensive gene expression analysis to search for molecular signals that differentiate schizophrenia patients from healthy controls and examined whether an identified signal was concentrated in a subgroup of the patients. METHODS: Transcriptome sequencing of 14 superior temporal gyrus (STG) samples of subjects with schizophrenia and 15 matched controls from the Stanley Medical Research Institute (SMRI) was performed. Differential expression and pathway enrichment analysis results were compared to an independent cohort. Replicability was tested on 6 additional independent datasets. RESULTS: The 2 STG cohorts showed high replicability. Pathway enrichment analysis of the down-regulated genes pointed to proteasome-related pathways. Meta-analysis of differential expression identified down-regulation of 12 of 39 proteasome subunit genes in schizophrenia. The signal of proteasome subunits down-regulation was replicated in 6 additional datasets (overall 8 cohorts with 267 schizophrenia and 266 control samples, from 5 brain regions). The signal was concentrated in a subgroup of patients with schizophrenia. CONCLUSIONS: We detected global down-regulation of proteasome subunits in a subgroup of patients with schizophrenia. We hypothesize that the down-regulation of proteasome subunits leads to proteasome dysfunction that causes accumulation of ubiquitinated proteins, which has been recently detected in a subgroup of schizophrenia patients. Thus, down-regulation of proteasome subunits might define a biological subtype of schizophrenia.


Asunto(s)
Encéfalo/enzimología , Perfilación de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/metabolismo , Esquizofrenia/enzimología , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Conjuntos de Datos como Asunto , Diagnóstico , Regulación hacia Abajo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/genética , Esquizofrenia/genética , Lóbulo Temporal/enzimología , Transcriptoma/genética
12.
Nat Commun ; 11(1): 3942, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770063

RESUMEN

Though discovered over 100 years ago, the molecular foundation of sporadic Alzheimer's disease (AD) remains elusive. To better characterize the complex nature of AD, we constructed multiscale causal networks on a large human AD multi-omics dataset, integrating clinical features of AD, DNA variation, and gene- and protein-expression. These probabilistic causal models enabled detection, prioritization and replication of high-confidence master regulators of AD-associated networks, including the top predicted regulator, VGF. Overexpression of neuropeptide precursor VGF in 5xFAD mice partially rescued beta-amyloid-mediated memory impairment and neuropathology. Molecular validation of network predictions downstream of VGF was also achieved in this AD model, with significant enrichment for homologous genes identified as differentially expressed in 5xFAD brains overexpressing VGF. Our findings support a causal role for VGF in protecting against AD pathogenesis and progression.


Asunto(s)
Enfermedad de Alzheimer/etiología , Encéfalo/patología , Factores de Crecimiento Nervioso/metabolismo , Mapas de Interacción de Proteínas , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Mapeo de Interacción de Proteínas , Proteómica
13.
Schizophr Res ; 220: 29-37, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376074

RESUMEN

One of the main theories accounting for the underlying pathophysiology of schizophrenia posits alterations in GABAergic neurotransmission. While previous gene expression studies of postmortem brain samples typically report the down-regulation of GABA related genes in schizophrenia, the results are often inconsistent and not uniform across studies. We performed a systematic gene expression analysis of 22 GABA related genes in postmortem superior temporal gyrus (STG) samples of 19 elderly subjects with schizophrenia (mean age: 77) and 14 matched controls from the Icahn school of Medicine at Mount Sinai (MSSM) cohort. To test the validity and robustness of the resulting differentially expressed genes, we then conducted a meta-analysis of the MSSM and an independent dataset from the Stanley Consortium of 14 STG samples of relatively young subjects with schizophrenia (mean age: 44) and 15 matched controls. For the first time, the findings showed the down-regulation of three GABA-receptor subunits of type A, GABRA1, GABRA2 and GABRB3, in the STG samples of subjects with schizophrenia, in both the elderly and the relatively young patients. These findings, as well as previous results, lend weight to the notion of a common upstream pathology that alters GABAergic neurotransmission in schizophrenia. GABRA1, GABRA2 and GABRB3 down-regulation may contribute to the pathophysiology and clinical manifestations of schizophrenia through altered oscillation synchronization in the STG.


Asunto(s)
Esquizofrenia , Adulto , Anciano , Regulación hacia Abajo , Expresión Génica , Humanos , Receptores de GABA , Receptores de GABA-A/genética , Esquizofrenia/genética , Lóbulo Temporal
14.
BMC Med ; 18(1): 23, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32024511

RESUMEN

BACKGROUND: The human brain is complex and interconnected structurally. Brain connectome change is associated with Alzheimer's disease (AD) and other neurodegenerative diseases. Genetics and genomics studies have identified molecular changes in AD; however, the results are often limited to isolated brain regions and are difficult to interpret its findings in respect to brain connectome. The mechanisms of how one brain region impacts the molecular pathways in other regions have not been systematically studied. And how the brain regions susceptible to AD pathology interact with each other at the transcriptome level and how these interactions relate to brain connectome change are unclear. METHODS: Here, we compared structural brain connectomes defined by probabilistic tracts using diffusion magnetic resonance imaging data in Alzheimer's Disease Neuroimaging Initiative database and a brain transcriptome dataset covering 17 brain regions. RESULTS: We observed that the changes in diffusion measures associated with AD diagnosis status and the associations were replicated in an independent cohort. The result suggests that disease associated white matter changes are focal. Analysis of the brain connectome by genomic data, tissue-tissue transcriptional synchronization between 17 brain regions, indicates that the regions connected by AD-associated tracts were likely connected at the transcriptome level with high number of tissue-to-tissue correlated (TTC) gene pairs (P = 0.03). And genes involved in TTC gene pairs between white matter tract connected brain regions were enriched in signaling pathways (P = 6.08 × 10-9). Further pathway interaction analysis identified ionotropic glutamate receptor pathway and Toll receptor signaling pathways to be important for tissue-tissue synchronization at the transcriptome level. Transcript profile entailing Toll receptor signaling in the blood was significantly associated with diffusion properties of white matter tracts, notable association between fractional anisotropy and bilateral cingulum angular bundles (Ppermutation = 1.0 × 10-2 and 4.9 × 10-4 for left and right respectively). CONCLUSIONS: In summary, our study suggests that brain connectomes defined by MRI and transcriptome data overlap with each other.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Genómica/métodos , Imagen por Resonancia Magnética/métodos , Anciano , Enfermedad de Alzheimer/patología , Encéfalo/patología , Femenino , Humanos , Masculino
15.
Dialogues Clin Neurosci ; 21(1): 7-19, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31607776

RESUMEN

Multifaceted evidence supports the hypothesis that inflammatory-immune mechanisms contribute to Alzheimer disease (AD) neuropathology and genetic association of several immune specific genes (TREM2, CR1, and CD33) suggests that maladaptive immune responses may be pivotal drivers of AD pathogenesis. We reviewed microglia-related data from postmortem AD studies and examined supporting evidence from AD animal models to answer the following questions: i) What is the temporal sequence of immune activation in AD progression and what is its impact on cognition? ii) Are there discordant, "primed", microglia responses in AD vs successful cognitive aging? iii) Does central nervous system (CNS) repair in aging depend on recruitment of the elements of cellular adaptive immune response such as effector T cells, and can the recruitment of systemic immune cells ameliorate AD neuropathology? iv) How effective are the immune-system-based therapeutic approaches currently employed for the treatment of AD?


Asunto(s)
Inmunidad Adaptativa/inmunología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/psicología , Encefalitis/inmunología , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Cognición , Envejecimiento Cognitivo , Encefalitis/complicaciones , Humanos , Microglía/inmunología
16.
NPJ Schizophr ; 5(1): 3, 2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696826

RESUMEN

Oligodendrocyte (OLG)-related abnormalities have been broadly observed in schizophrenia (SZ); however, the etiology of these abnormalities remains unknown. As SZ is broadly believed to be a developmental disorder, the etiology of the myelin abnormalities in SZ may be related to OLG fate specification during development. Noncoding RNAs (ncRNAs) are an important part of multifaceted transcriptional complexes participating in neurogenic commitment and regulation of postmitotic cell function. The long ncRNA, NEAT1, is a structural component of paraspeckles (subnuclear bodies in interchromatin regions) that may control activity of developmental enhancers of OLG fate specification. Gene expression studies of multiple cortical regions from individuals with SZ showed strong downregulation of NEAT1 levels relative to controls. NEAT1-deficient mice show significant decreases in the numbers of OLG-lineage cells in the frontal cortex. To gain further insight into biological processes affected by NEAT1 deficiency, we analyzed RNA-seq data from frontal cortex of NEAT1-/- mice. Analyses of differentially expressed gene signature from NEAT1-/- mice revealed a significant impact on processes related to OLG differentiation and RNA posttranscriptional modification with the underlying mechanisms involving Wnt signaling, cell contact interactions, and regulation of cholesterol/lipid metabolism. Additional studies revealed evidence of co-expression of SOX10, an OLG transcription factor, and NEAT1, and showed enrichment of OLG-specific transcripts in NEAT1 purified chromatin isolates from human frontal cortex. Reduced nuclear retention of quaking isoform 5 in NEAT1-/- mice shed light on possible mechanism(s) responsible for reduced expression of OLG/myelin proteins and supported the involvement of NEAT1 in oligodendrocyte function.

17.
J Mol Neurosci ; 67(4): 504-510, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30635783

RESUMEN

Disruption of brain insulin signaling may explain the higher Alzheimer's disease (AD) risk among type 2 diabetic (T2D) patients. There is evidence from in vitro and human postmortem studies that combination of insulin with hypoglycemic medications is neuroprotective and associated with less amyloid aggregation. We examined the effect of 8-month intranasal administration of insulin, exenatide (a GLP-1 agonist), combination therapy (insulin + exenatide) or saline, in wild-type (WT) and an AD-like mouse model (Tg2576). Mice were assessed for learning, gene expression of key mediators and effectors of the insulin receptor signaling pathway (IRSP-IRS1, AKT1, CTNNB1, INSR, IRS2, GSK3B, IGF1R, AKT3), and brain Amyloid Beta (Aß) levels. In Tg2576 mice, combination therapy reduced expression of IRSP genes which was accompanied by better learning. Cortical Aß levels were decreased by 15-30% in all groups compared to saline but this difference did not reach statistical significance. WT mice groups, with or without treatment, did not differ in any comparison. Disentangling the mechanisms underlying the potential beneficial effects of combination therapy on the IR pathway and AD-like behavior is warranted.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Exenatida/uso terapéutico , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Combinación de Medicamentos , Exenatida/administración & dosificación , Exenatida/farmacología , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Insulina/administración & dosificación , Insulina/farmacología , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Receptor de Insulina/metabolismo , Transducción de Señal
18.
Alzheimers Dement ; 15(2): 217-231, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30321504

RESUMEN

INTRODUCTION: Altered cell cycle reentry has been observed in Alzheimer's disease (AD). Denticleless (DTL) was predicted as the top driver of a cell cycle subnetwork associated with AD. METHODS: We systematically investigated DTL expression in AD and studied the molecular, cellular, and behavioral endophenotypes triggered by DTL overexpression. RESULTS: We experimentally validated that CDT2, the protein encoded by DTL, activated cyclin-dependent kinases through downregulating P21, which induced tau hyperphosphorylation and Aß toxicity, two hallmarks of AD. We demonstrated that cyclin-dependent kinases inhibition by roscovitine not only rescued CDT2-induced cognitive defects but also reversed expression changes induced by DTL overexpression. RNA-seq data from the DTL overexpression experiments revealed the molecular mechanisms underlying CDT2 controlled cell cycle reentry in AD. DISCUSSION: These findings provide new insights into the molecular mechanisms of AD pathogenesis and thus pave a way for developing novel therapeutics for AD by targeting AD specific cell cycle networks and drivers.


Asunto(s)
Enfermedad de Alzheimer/patología , Ciclo Celular/fisiología , Proteínas Nucleares/metabolismo , Animales , Regulación hacia Abajo , Humanos , Ratones , Fosforilación/fisiología , Proteínas tau/metabolismo
19.
Mol Neurobiol ; 56(6): 4492-4517, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30338483

RESUMEN

We utilized a cell-level approach to examine glycolytic pathways in the DLPFC of subjects with schizophrenia (n = 16) and control (n = 16) and found decreased mRNA expression of glycolytic enzymes in pyramidal neurons, but not astrocytes. To replicate these novel bioenergetic findings, we probed independent datasets for bioenergetic targets and found similar abnormalities. Next, we used a novel strategy to build a schizophrenia bioenergetic profile by a tailored application of the Library of Integrated Network-Based Cellular Signatures data portal (iLINCS) and investigated connected cellular pathways, kinases, and transcription factors using Enrichr. Finally, with the goal of identifying drugs capable of "reversing" the bioenergetic schizophrenia signature, we performed a connectivity analysis with iLINCS and identified peroxisome proliferator-activated receptor (PPAR) agonists as promising therapeutic targets. We administered a PPAR agonist to the GluN1 knockdown model of schizophrenia and found it improved long-term memory. Taken together, our findings suggest that tailored bioinformatics approaches, coupled with the LINCS library of transcriptional signatures of chemical and genetic perturbagens, may be employed to identify novel treatment strategies for schizophrenia and related diseases.


Asunto(s)
Metabolismo Energético , Redes Reguladoras de Genes , Esquizofrenia/metabolismo , Esquizofrenia/terapia , Animales , Análisis por Conglomerados , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Descubrimiento de Drogas , Metabolismo Energético/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Captura por Microdisección con Láser , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Pioglitazona/farmacología , Inhibición Prepulso/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reflejo de Sobresalto/efectos de los fármacos , Reproducibilidad de los Resultados , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Conducta Estereotipada/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
20.
Sci Data ; 5: 180185, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30204156

RESUMEN

Alzheimer's disease (AD) affects half the US population over the age of 85 and is universally fatal following an average course of 10 years of progressive cognitive disability. Genetic and genome-wide association studies (GWAS) have identified about 33 risk factor genes for common, late-onset AD (LOAD), but these risk loci fail to account for the majority of affected cases and can neither provide clinically meaningful prediction of development of AD nor offer actionable mechanisms. This cohort study generated large-scale matched multi-Omics data in AD and control brains for exploring novel molecular underpinnings of AD. Specifically, we generated whole genome sequencing, whole exome sequencing, transcriptome sequencing and proteome profiling data from multiple regions of 364 postmortem control, mild cognitive impaired (MCI) and AD brains with rich clinical and pathophysiological data. All the data went through rigorous quality control. Both the raw and processed data are publicly available through the Synapse software platform.


Asunto(s)
Enfermedad de Alzheimer , Proteoma , Transcriptoma , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Disfunción Cognitiva/genética , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...