Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 298(5): 101833, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35304101

RESUMEN

Bone marrow development and endochondral bone formation occur simultaneously. During endochondral ossification, periosteal vasculatures and stromal progenitors invade the primary avascular cartilaginous anlage, which induces primitive marrow development. We previously determined that bone marrow podoplanin (PDPN)-expressing stromal cells exist in the perivascular microenvironment and promote megakaryopoiesis and erythropoiesis. In this study, we aimed to examine the involvement of PDPN-expressing stromal cells in postnatal bone marrow generation. Using histological analysis, we observed that periosteum-derived PDPN-expressing stromal cells infiltrated the cartilaginous anlage of the postnatal epiphysis and populated on the primitive vasculature of secondary ossification center. Furthermore, immunophenotyping and cellular characteristic analyses indicated that the PDPN-expressing stromal cells constituted a subpopulation of the skeletal stem cell lineage. In vitro xenovascular model cocultured with human umbilical vein endothelial cells and PDPN-expressing skeletal stem cell progenies showed that PDPN-expressing stromal cells maintained vascular integrity via the release of angiogenic factors and vascular basement membrane-related extracellular matrices. We show that in this process, Notch signal activation committed the PDPN-expressing stromal cells into a dominant state with basement membrane-related extracellular matrices, especially type IV collagens. Our findings suggest that the PDPN-expressing stromal cells regulate the integrity of the primitive vasculatures in the epiphyseal nascent marrow. To the best of our knowledge, this is the first study to comprehensively examine how PDPN-expressing stromal cells contribute to marrow development and homeostasis.


Asunto(s)
Médula Ósea , Periostio , Médula Ósea/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Periostio/metabolismo , Células del Estroma/metabolismo
2.
Thromb Res ; 210: 26-32, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34968852

RESUMEN

INTRODUCTION: Protein S is a vitamin K-dependent glycoprotein with important anticoagulant, fibrinolytic, anti-inflammatory, anti-apoptotic, and cytoprotective functions. Congenital protein S deficiency is an autosomal dominant thrombophilia due to protein S gene (PROS1) variations. Our group identified a variation in PROS1 that translates into protein S deficiency: c.50 T > C (p.Leu17Pro). Here, we investigated the mechanisms by which this variation results in protein S deficiency. MATERIALS AND METHODS: The effect of L17P substitution on protein S signal peptide was predicted by in silico (a computational prediction technique) analysis of hydrophobicity and signal peptide cleavage. Recombinant protein S was overexpressed in HEK293 and COS-7 cells. Intracellular kinetics and extracellular secretion of recombinant protein S-L17P were analyzed by western blotting and immunocytochemistry. RESULTS: In silico hydrophobicity analysis showed that protein S-L17P had disrupted hydrophobic status in the h-region of its signal peptide. Under normal culture conditions, recombinant protein S -L17P was not detected in either transfectant cell lysates or medium. Upon treatment with a proteasome inhibitor, recombinant protein S-L17P was clearly detected in the cell lysate, but not in the culture medium. Recombinant protein S-L17P did not undergo post-translational modification with N-glycosylation, suggesting that the nascent polypeptide of recombinant protein S-L17P is not transported to the endoplasmic reticulum lumen, but is mislocalized to the cytosol. CONCLUSION: PROS1-L17P variation translates into protein S deficiency. Protein S-L17P causes its cytosolic mislocalization resulting in its proteasome-dependent degradation.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteína S , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteína S/genética , Señales de Clasificación de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...