Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(7): 077202, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32142335

RESUMEN

Establishing the physical mechanism governing exchange interactions is fundamental for exploring exotic phases such as quantum spin liquids in real materials. In this Letter, we address exchange interactions in Sr_{2}CuTe_{x}W_{1-x}O_{6}, a series of double perovskites that realize a spin-1/2 square lattice and are suggested to harbor a quantum spin liquid ground state arising from the random distribution of nonmagnetic ions. Our ab initio multireference configuration interaction calculations show that replacing Te atoms with W atoms changes the dominant couplings from nearest to next-nearest neighbor due to the crucial role of unoccupied states of the nonmagnetic ions in the super-superexchange mechanism. Combined with spin-wave theory simulations, our calculated exchange couplings provide an excellent description of the inelastic neutron scattering spectra of the parent compounds, as well as explaining that the magnetic excitations in Sr_{2}CuTe_{0.5}W_{0.5}O_{6} emerge from bond-disordered exchange couplings. Our results demonstrate the crucial role of the nonmagnetic cations in exchange interactions paving the way to further explore quantum spin liquid phases in bond-disordered materials.

2.
Phys Rev Lett ; 117(23): 237203, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982654

RESUMEN

Sr_{2}CuTeO_{6} presents an opportunity for exploring low-dimensional magnetism on a square lattice of S=1/2 Cu^{2+} ions. We employ ab initio multireference configuration interaction calculations to unravel the Cu^{2+} electronic structure and to evaluate exchange interactions in Sr_{2}CuTeO_{6}. The latter results are validated by inelastic neutron scattering using linear spin-wave theory and series-expansion corrections for quantum effects to extract true coupling parameters. Using this methodology, which is quite general, we demonstrate that Sr_{2}CuTeO_{6} is an almost ideal realization of a nearest-neighbor Heisenberg antiferromagnet but with relatively weak coupling of 7.18(5) meV.

3.
Sci Rep ; 6: 37925, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27901091

RESUMEN

Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.

4.
Sci Rep ; 6: 29585, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27404112

RESUMEN

Due to the combination of a substantial spin-orbit coupling and correlation effects, iridium oxides hold a prominent place in the search for novel quantum states of matter, including, e.g., Kitaev spin liquids and topological Weyl states. We establish the promise of the very recently synthesized hyper-honeycomb iridate ß-Li2IrO3 in this regard. A detailed theoretical analysis reveals the presence of large ferromagnetic first-neighbor Kitaev interactions, while a second-neighbor antiferromagnetic Heisenberg exchange drives the ground state from ferro to zigzag order via a three-dimensional Kitaev spin liquid and an incommensurate phase. Experiment puts the system in the latter regime but the Kitaev spin liquid is very close and reachable by a slight modification of the ratio between the second- and first-neighbor couplings, for instance via strain.

5.
Nat Commun ; 7: 10273, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26776664

RESUMEN

Iridium oxides with a honeycomb lattice have been identified as platforms for the much anticipated Kitaev topological spin liquid: the spin-orbit entangled states of Ir(4+) in principle generate precisely the required type of anisotropic exchange. However, other magnetic couplings can drive the system away from the spin-liquid phase. With this in mind, here we disentangle the different magnetic interactions in Li2IrO3, a honeycomb iridate with two crystallographically inequivalent sets of adjacent Ir sites. Our ab initio many-body calculations show that, while both Heisenberg and Kitaev nearest-neighbour couplings are present, on one set of Ir-Ir bonds the former dominates, resulting in the formation of spin-triplet dimers. The triplet dimers frame a strongly frustrated triangular lattice and by exact cluster diagonalization we show that they remain protected in a wide region of the phase diagram.

6.
Sci Rep ; 5: 14718, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26434954

RESUMEN

With large spin-orbit coupling, the electron configuration in d-metal oxides is prone to highly anisotropic exchange interactions and exotic magnetic properties. In 5d(5) iridates, given the existing variety of crystal structures, the magnetic anisotropy can be tuned from antisymmetric to symmetric Kitaev-type, with interaction strengths that outsize the isotropic terms. By many-body electronic-structure calculations we here address the nature of the magnetic exchange and the intriguing spin-glass behavior of Li2RhO3, a 4d(5) honeycomb oxide. For pristine crystals without Rh-Li site inversion, we predict a dimerized ground state as in the isostructural 5d(5) iridate Li2IrO3, with triplet spin dimers effectively placed on a frustrated triangular lattice. With Rh-Li anti-site disorder, we explain the observed spin-glass phase as a superposition of different, nearly degenerate symmetry-broken configurations.

7.
Nat Commun ; 6: 7306, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26105992

RESUMEN

A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics.

8.
Inorg Chem ; 53(10): 4833-9, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24779549

RESUMEN

The electronic structure of the low-dimensional 4d(5) oxides Sr2RhO4 and Ca3CoRhO6 is herein investigated by embedded-cluster quantum chemistry calculations. A negative tetragonal-like t2g splitting is computed in Sr2RhO4 and a negative trigonal-like splitting is predicted for Ca3CoRhO6, in spite of having positive tetragonal distortions in the former material and cubic oxygen octahedra in the latter. Our findings bring to the foreground the role of longer-range crystalline anisotropy in generating noncubic potentials that compete with local distortions of the ligand cage, an issue not addressed in standard textbooks on crystal-field theory. We also show that sizable t2g(5)-t2g(4)eg(1) couplings via spin-orbit interactions produce in Sr2RhO4 ⟨Z⟩ = ⟨Σ(i)l(i)·s(i)⟩ ground-state expectation values significantly larger than 1, quite similar to theoretical and experimental data for 5d(5) spin-orbit-driven oxides such as Sr2IrO4. On the other hand, in Ca3CoRhO6, the ⟨Z⟩ values are lower because of larger t2g-eg splittings. Future X-ray magnetic circular dichroism experiments on these 4d oxides will constitute a direct test for the ⟨Z⟩ values that we predict here, the importance of many-body t2g-eg couplings mediated by spin-orbit interactions, and the role of low-symmetry fields associated with the extended surroundings.

9.
Phys Rev Lett ; 112(14): 147201, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24766006

RESUMEN

We report x-ray resonant magnetic scattering and resonant inelastic x-ray scattering studies of epitaxially strained Sr2IrO4 thin films. The films were grown on SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates, under slight tensile and compressive strains, respectively. Although the films develop a magnetic structure reminiscent of bulk Sr2IrO4, the magnetic correlations are extremely anisotropic, with in-plane correlation lengths significantly longer than the out-of-plane correlation lengths. In addition, the compressive (tensile) strain serves to suppress (enhance) the magnetic ordering temperature TN, while raising (lowering) the energy of the zone-boundary magnon. Quantum chemical calculations show that the tuning of magnetic energy scales can be understood in terms of strain-induced changes in bond lengths.

10.
Phys Rev Lett ; 110(7): 076402, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166387

RESUMEN

The electronic structure of the honeycomb lattice iridates Na(2)IrO(3) and Li(2)IrO(3) has been investigated using resonant inelastic x-ray scattering (RIXS). Crystal-field-split d-d excitations are resolved in the high-resolution RIXS spectra. In particular, the splitting due to noncubic crystal fields, derived from the splitting of j(eff)=3/2 states, is much smaller than the typical spin-orbit energy scale in iridates, validating the applicability of j(eff) physics in A(2)IrO(3). We also find excitonic enhancement of the particle-hole excitation gap around 0.4 eV, indicating that the nearest-neighbor Coulomb interaction could be large. These findings suggest that both Na(2)IrO(3) and Li(2)IrO(3) can be described as spin-orbit Mott insulators, similar to the square lattice iridate Sr(2)IrO(4).

11.
Phys Rev Lett ; 109(15): 157401, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23102366

RESUMEN

The electronic structure of Sr3CuIrO6, a model system for the 5d Ir ion in an octahedral environment, is studied through a combination of resonant inelastic x-ray scattering and theoretical calculations. Resonant inelastic x-ray scattering spectra at the Ir L3 edge reveal an Ir t(2g) manifold that is split into three levels, in contrast to the expectations of the strong spin-orbit-coupling limit. Effective Hamiltonian and ab inito quantum chemistry calculations find a strikingly large noncubic crystal field splitting comparable to the spin-orbit coupling, which results in a strong mixing of the j(eff)=1/2 and j(eff)=3/2 states and modifies the isotropic wave functions on which many theoretical models are based.

12.
J Phys Condens Matter ; 24(18): 185501, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22481433

RESUMEN

In this work, we perform first-principles DFT calculations to investigate the interplay between magnetic and structural properties in Ni(2)MnGa. We demonstrate that the relative stability of austenite (cubic) and non-modulated martensite (tetragonal) phases depends critically on the magnetic interactions between Mn atoms. While standard approximate DFT functionals stabilize the latter phase, a more accurate treatment of electronic localization and magnetism, obtained with DFT+U, suppresses the non-modulated tetragonal structure for the stoichiometric compound, in better agreement with experiments. We show that the Anderson impurity model, with Mn atoms treated as magnetic impurities, can explain this observation and that the fine balance between super-exchange RKKY type interactions mediated by Ni d and Ga p orbitals determines the equilibrium structure of the crystal. The Anderson model is also demonstrated to capture the effect of the number of valence electrons per unit cell on the structural properties, often used as an empirical parameter to tune the behavior of Ni(2)MnGa based alloys. Finally, we show that off-stoichiometric compositions with excess Mn promote transitions to a non-modulated tetragonal structure, in agreement with experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...