Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168864, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040365

RESUMEN

Sustainable exploitation of groundwater resources for drinking water provision in rural communities in sub-Sahara Africa remains elusive due to the limited knowledge of these hydrogeological systems. This is exacerbated by poor maintenance of existing infrastructure, limited technical capacity, the socio-economic characteristics of the area and poor governance. Assessing the likelihood of a given individual user experiencing water shortage calls for an interdisciplinary approach. After a preliminary multifactorial analysis incorporating a range of variables from technical to societal, it was found that most of the overall risk of water shortage for an individual household could be attributed to three factors; (1) Proximity, specified as the distance to the closest supply well (determined by geographical parameters), (2) Availability of good quality water in the wells (determined by hydrogeological understanding and modelling), and (3) Sustainability (determined by socio-technical and socio-economic parameters). In the latter case, a distinction was made between hardware functionality- the water point's performance considering a sufficient yield and reliability through time- and software functionality, based on a combination of socioeconomic data from surveys and analysed using Multiple Factor Analysis (MFA). All three factors are eventually mapped onto indicators in the range of [0-1] and then represented in a Geographical Information System based on the partition of the entire spatial domain (e.g., counties, villages, and neighbourhoods). The three indicators are then combined in a final index based on the product of the three factors, thus mapping time-dependent overall risk and allowing the assessment of temporal risk-evolution scenarios. The methodology is applied to Kwale County, Kenya, where community handpumps and groundwater points comprise the main water supply system. Apart from mapping the present situation, the methodology is finally used to assess the impact of future climate scenarios.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35010851

RESUMEN

Reducing disease from unsafe drinking-water is a key environmental health objective in rural Sub-Saharan Africa, where water management is largely community-based. The effectiveness of environmental health risk reporting to motivate sustained behaviour change is contested but as efforts to increase rural drinking-water monitoring proceed, it is timely to ask how water quality information feedback can improve water safety management. Using cross-sectional (1457 households) and longitudinal (167 participants) surveys, semi-structured interviews (73 participants), and water quality monitoring (79 sites), we assess water safety perceptions and evaluate an information intervention through which Escherichia coli monitoring results were shared with water managers over a 1.5-year period in rural Kitui County, Kenya. We integrate the extended parallel process model and the precaution adoption process model to frame risk information processing and stages of behaviour change. We highlight that responses to risk communications are determined by the specificity, framing, and repetition of messaging and the self-efficacy of information recipients. Poverty threatscapes and gender norms hinder behaviour change, particularly at the household-level; however, test results can motivate supply-level managers to implement hazard control measures-with effectiveness and sustainability dependent on infrastructure, training, and ongoing resourcing. Our results have implications for rural development efforts and environmental risk reporting in low-income settings.


Asunto(s)
Agua Potable , Calidad del Agua , Estudios Transversales , Salud Ambiental , Miedo , Humanos , Kenia , Pobreza , Población Rural , Abastecimiento de Agua
3.
Sci Total Environ ; 694: 133634, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31756808

RESUMEN

The industrialization process taking place in Africa has led to an overall increase in groundwater abstraction in most countries in the continent. However, the lack of hydrogeological data, as in many developing countries, makes it difficult to properly manage groundwater systems. This study presents a real case study in which a combination of different hydrogeological tools together with different sources of information allow the assessment of how increased competition for water may be affecting groundwater systems by analysing the sustainability of new abstraction regimes under different real climatic condition (before, during and after La Niña 2016). The area where this approach has been applied is Kwale County (in Coastal Kenya) in a hydrogeological context representative of an important part of the east coast of the continent, where new mining and agriculture activities co-exist with tourism and local communities. The results show that the lack of aquifer systems data can be overcome, at least partly, by integrating different sources of information. Most of the time, water-reliant users collect specific hydrogeological information that can contribute to defining the overall hydrogeological system, since their own main purpose is to exploit the aquifer with the maximum productivity. Therefore, local community water usage, together with different stakeholder's knowledge and good corporate water management act as a catalyst for providing critical data, and allows the generation of credible models for future groundwater management and resource allocation. Furthermore, complementary but simple information sources such as in situ interviews, Google Earth, Trip Advisor and easy-to use analytical methods that can be applied in the African context as in many developing countries, and enables groundwater abstraction to be estimated and the sustainability of the aquifer system to be defined, allowing potential future risks to be assessed.

4.
Sci Total Environ ; 649: 722-730, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179812

RESUMEN

This study examines the relationship between rainfall and groundwater use in rural Kenya, using automatically-transmitted hourly data from handpumps (n = 266), daily rainfall records (n = 19), and household survey data (n = 2508). We demonstrate a 34% reduction in groundwater use during the wet season compared to the dry season, suggesting a large shift from improved to unimproved sources in the wet season. By cross-correlating handpump and rainfall time series, we also reveal substantial short-term changes in groundwater pumping observed immediately following heavy rainfall. Further investigation and modelling of this response reveals a 68% reduction in pump use on the day immediately following heavy rain. We then investigate reasons for this behavioural response to rainfall, using survey data to examine the characteristics, concerns and behaviours of households in the area where the reduction in pump use was most marked. In this area rainwater harvesting was widespread and only 6% of households reported handpumps as their sole source of drinking water in the wet season, compared to 86% in the dry season. These findings shed light on the impact increasing rainfall variability may have on the Sustainable Development Goal of "universal and equitable access to safe and affordable drinking water for all". Specifically, we suggest a flaw in the water policy assumption that the provision of improved sources of drinking water-in this case community handpumps-translates to consistent use and the associated health benefits. We note that failure to understand and account for actual water use behaviour may results in adverse public health outcomes and maladapted WASH policy and interventions.


Asunto(s)
Agua Subterránea/análisis , Lluvia , Desarrollo Sostenible , Abastecimiento de Agua , Kenia , Población Rural , Estaciones del Año
5.
Sci Total Environ ; 626: 156-164, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29335170

RESUMEN

An improved understanding of failure risks for water supplies in rural sub-Saharan Africa will be critical to achieving the global goal of safe water for all by 2030. In the absence of longitudinal biophysical and operational data, investigations into water point failure risk factors have to date been limited to cross-sectional research designs. This retrospective cohort study applies survival analysis to identify factors that predict failure risks for handpumps installed on boreholes along the south coast of Kenya from the 1980s. The analysis is based on a unique dataset linking attributes of >300 water points at the time of installation with their operational lifespan over the following decades. Cox proportional hazards and accelerated failure time models suggest water point failure risks are higher and lifespans are shorter when water supplied is more saline, static water level is deeper, and groundwater is pumped from an unconsolidated sand aquifer. The risk of failure also appears to grow as distance to spare part suppliers increases. To bolster the sustainability of rural water services and ensure no community is left behind, post-construction support mechanisms will need to mitigate heterogeneous environmental and geographical challenges. Further studies are needed to better understand the causal pathways that underlie these risk factors in order to inform policies and practices that ensure water services are sustained even where unfavourable conditions prevail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...