Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 98(17): 9551-6, 2001 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-11493705

RESUMEN

The correct formation of disulfide bonds in the periplasm of Escherichia coli involves Dsb proteins, including two related periplasmic disulfide-bond isomerases, DsbC and DsbG. DsbD is a membrane protein required to maintain the functional oxidation state of DsbC and DsbG. In this work, purified proteins were used to investigate the interaction between DsbD and DsbC. A 131-residue N-terminal fragment of DsbD (DsbDalpha) was expressed and purified and shown to form a functional folded domain. Gel filtration results indicate that DsbDalpha is monomeric. DsbDalpha was shown to interact directly with and to reduce the DsbC dimer, thus increasing the isomerase activity of DsbC. The DsbC-DsbDalpha complex was characterized, and formation of the complex was shown to require the N-terminal dimerization domain of DsbC. These results demonstrate that DsbD interacts directly with full-length DsbC and imply that no other periplasmic components are required to maintain DsbC in the functional reduced state.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Proteínas de la Membrana/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Bacterianas/química , Cisteína/química , Dimerización , Sustancias Macromoleculares , Proteínas de la Membrana/química , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Proteína Disulfuro Isomerasas/química , Estructura Terciaria de Proteína
2.
Cell ; 103(5): 769-79, 2000 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-11114333

RESUMEN

The cytoplasmic membrane protein DsbD transfers electrons from the cytoplasm to the periplasm of E. coli, where its reducing power is used to maintain cysteines in certain proteins in the reduced state. We split DsbD into three structural domains, each containing two essential cysteines. Remarkably, when coexpressed, these truncated proteins restore DsbD function. Utilizing this three piece system, we were able to determine a pathway of the electrons through DsbD. Our findings strongly suggest that the pathway is based on a series of multistep redox reactions that include direct interactions between thioredoxin and DsbD, and between DsbD and its periplasmic substrates. A thioredoxin-fold domain in DsbD appears to have the novel role of intramolecular electron shuttle.


Asunto(s)
Disulfuros , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Western Blotting , Cisteína/química , Citoplasma/metabolismo , Transporte de Electrón , Escherichia coli/metabolismo , Genotipo , Modelos Biológicos , Oxidación-Reducción , Periplasma/metabolismo , Fenotipo , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Tiorredoxinas/metabolismo
3.
EMBO J ; 18(21): 5963-71, 1999 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-10545108

RESUMEN

The active-site cysteines of the Escherichia coli periplasmic protein disulfide bond isomerase (DsbC) are kept reduced by the cytoplasmic membrane protein, DsbD. DsbD, in turn, is reduced by cytoplasmic thioredoxin, indicating that DsbD transfers disulfidereducing potential from the cytoplasm to the periplasm. To understand the mechanism of this unusual mode of electron transfer, we have undertaken a genetic analysis of DsbD. In the process, we discovered that the previously suggested start site for the DsbD protein is incorrect. Our results permit the formulation of a model of DsbD membrane topology. Also, we show that six cysteines of DsbD conserved among DsbD homologs are essential for the reduction of DsbC, DsbG and for a reductive pathway leading to c-type cytochrome assembly in the periplasm. Our findings suggest a testable model for the DsbD-dependent transfer of electrons across the membrane, involving a cascade of disulfide bond reduction steps.


Asunto(s)
Cisteína/metabolismo , Escherichia coli/enzimología , Proteína Disulfuro Isomerasas/genética , Fosfatasa Alcalina/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Disulfuros/química , Transporte de Electrón , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Periplasma/enzimología , Biosíntesis de Proteínas , Proteína Disulfuro Isomerasas/química , Proteínas Recombinantes de Fusión
4.
Appl Environ Microbiol ; 65(1): 278-82, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9872790

RESUMEN

We describe useful vectors to select double-crossover events directly in site-directed marker exchange mutagenesis in gram-negative bacteria. These vectors contain the gusA marker gene, providing colorimetric screens to identify bacteria harboring those sequences. The applicability of these vectors was shown by mapping the 3' end of the Xanthomonas campestris gum operon, involved in biosynthesis of xanthan.


Asunto(s)
Genes Bacterianos , Vectores Genéticos , Bacterias Gramnegativas/genética , Operón , Xanthomonas campestris/genética , Secuencia de Bases , Mapeo Cromosómico , Cartilla de ADN/genética , ADN Bacteriano/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Appl Microbiol Biotechnol ; 50(2): 145-52, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9763683

RESUMEN

Xanthan gum is a complex exopolysaccharide produced by the plant-pathogenic bacterium Xanthomonas campestris pv. campestris. It consists of D-glucosyl, D-mannosyl, and D-glucuronyl acid residues in a molar ratio of 2:2:1 and variable proportions of O-acetyl and pyruvyl residues. Because of its physical properties, it is widely used as a thickener or viscosifier in both food and non-food industries. Xanthan gum is also used as a stabilizer for a wide variety of suspensions, emulsions, and foams. This article outlines aspects of the biochemical assembly and genetic loci involved in its biosynthesis, including the synthesis of the sugar nucleotide substrates, the building and decoration of the pentasaccharide subunit, and the polymerization and secretion of the polymer. An overview of the applications and industrial production of xanthan is also covered.


Asunto(s)
Polisacáridos Bacterianos/biosíntesis , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Secuencia de Carbohidratos , Datos de Secuencia Molecular
6.
J Bacteriol ; 180(7): 1607-17, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9537354

RESUMEN

Xanthan is an industrially important exopolysaccharide produced by the phytopathogenic, gram-negative bacterium Xanthomonas campestris pv. campestris. It is composed of polymerized pentasaccharide repeating units which are assembled by the sequential addition of glucose-1-phosphate, glucose, mannose, glucuronic acid, and mannose on a polyprenol phosphate carrier (L. Ielpi, R. O. Couso, and M. A. Dankert, J. Bacteriol. 175:2490-2500, 1993). A cluster of 12 genes in a region designated xpsI or gum has been suggested to encode proteins involved in the synthesis and polymerization of the lipid intermediate. However, no experimental evidence supporting this suggestion has been published. In this work, from the biochemical analysis of a defined set of X. campestris gum mutants, we report experimental data for assigning functions to the products of the gum genes. We also show that the first step in the assembly of the lipid-linked intermediate is severely affected by the combination of certain gum and non-gum mutations. In addition, we provide evidence that the C-terminal domain of the gumD gene product is sufficient for its glucosyl-1-phosphate transferase activity. Finally, we found that alterations in the later stages of xanthan biosynthesis reduce the aggressiveness of X. campestris against the plant.


Asunto(s)
Genes Bacterianos , Enfermedades de las Plantas/etiología , Polisacáridos Bacterianos/biosíntesis , Xanthomonas campestris/genética , Secuencia de Bases , Datos de Secuencia Molecular , Mutación , Uridina Difosfato Glucosa/metabolismo , Virulencia , Xanthomonas campestris/metabolismo , Xanthomonas campestris/patogenicidad
7.
Cell Mol Biol (Noisy-le-grand) ; 42(5): 673-82, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8832098

RESUMEN

The primary structure of several chloroplast fructose-1,6-bisphosphatase (CFBPase) was deduced from DNA sequences, but only spinach, pea and rapeseed enzymes have been characterized structurally. We analyzed whether CFBPases from different phylogenetic origin contain a common epitope. To this end a DNA fragment of 1200 base pairs encoding 338 amino acid residues of wheat CFBPase (38 kDa) was cloned in the expression plasmid pGEX-1 in frame with the gene coding for glutathione S-transferase (GT) of Schistosoma japonicun (26.5 kDa). Upon transformation of Escherichia coli and induction with isopropyl-beta-D-thiogalactopyranoside, centrifugation of the lysate partitioned 10% of the fusion protein in the supernatant fraction and the remaining 90% in the precipitate. The expected 65 kDa protein was purified from both the soluble and the particulate fraction by affinity chromatography on columns of glutathione-agarose. This fusion protein was successfully used to produce a monoclonal antibody that specifically recognized the CFBPase region of the fusion protein but not the GT moiety. Moreover, the monoclonal antibody immunoreacted not only with polypeptides (ca. 40 kDa) present in leaf crude extracts of other varieties of wheat (Triticum spelta, T. aestivum and T. durum), but also with homogeneous preparations of the spinach (Spinacia oleracea) and rapeseed (Brassica napus) enzymes. Thus, the cross reaction of this monoclonal antibody with counterparts from different plant species indicates the persistency of a common epitope through biological evolution.


Asunto(s)
Anticuerpos Monoclonales , Cloroplastos/enzimología , Fructosa-Bifosfatasa/inmunología , Triticum/enzimología , Secuencia de Aminoácidos , Animales , Especificidad de Anticuerpos , Cloroplastos/genética , Cloroplastos/inmunología , Clonación Molecular , Reacciones Cruzadas , Epítopos/genética , Epítopos/inmunología , Escherichia coli/genética , Evolución Molecular , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/aislamiento & purificación , Glutatión Transferasa/genética , Ratones , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/aislamiento & purificación , Plantas/enzimología , Plantas/genética , Plantas/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Schistosoma japonicum/enzimología , Schistosoma japonicum/genética , Especificidad de la Especie , Triticum/genética , Triticum/inmunología
8.
J Bacteriol ; 178(14): 4313-8, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8763965

RESUMEN

The Xanthomonas campestris gum gene cluster is composed of 12 genes designated gumB, -C, -D, -E, -F, -G, -H, -I, -J, -K, -L, and -M. The transcriptional organization of this gene cluster was analyzed by the construction of gum-lacZ transcriptional fusions in association with plasmid integration mutagenesis. This analysis, coupled with primer extension assays, indicated that the gum region was mainly expressed as an operon from a promoter located upstream of the first gene, gumB.


Asunto(s)
Genes Bacterianos , Operón , Polisacáridos Bacterianos/biosíntesis , Regiones Promotoras Genéticas , Xanthomonas campestris/genética , Secuencia de Bases , Genes Reporteros , Datos de Secuencia Molecular , Mutagénesis , ARN Bacteriano/genética , ARN Mensajero/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...