Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(17): 19866-19873, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32267669

RESUMEN

Confining light in extremely small cavities is crucial in nanophotonics, central to many applications. Employing a unique nanoparticle-on-mirror plasmonic structure and using a graphene film as a spacer, we create nanoscale cavities with volumes of only a few tens of cubic nanometers. The ultracompact cavity produces extremely strong optical near-fields, which facilitate the formation of single carbon quantum dots in the cavity and simultaneously empower the strong coupling between the excitons of the formed carbon quantum dot and the localized surface plasmons. This is manifested in the optical scattering spectra, showing a magnificent Rabi splitting of up to 200 meV under ambient conditions. In addition, we demonstrate that the strong coupling is tuneable with light irradiation. This opens new paradigms for investigating the fundamental light emission properties of carbon quantum dots in the quantum regime and paves the way for many significant applications.

2.
Nanoscale Adv ; 2(7): 2738-2744, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-36132381

RESUMEN

Being able to precisely control the reduction of two-dimensional graphene oxide films will open exciting opportunities for tailor-making the functionality of nanodevices with on-demand properties. Here we report the meticulously controlled reduction of individual graphene oxide flakes ranging from single to seven layers through controlled laser irradiation. It is found that the reduction can be customized in such a precise way that the film thickness can be accurately thinned with sub-nanometer resolution, facilitated by extraordinary temperature gradients >102 K nm-1 across the interlayers of graphene oxide films. Such precisely controlled reduction provides important pathways towards precision nanotechnology with custom-designed electrical, thermal, optical and chemical properties. We demonstrate that this can be exploited to fine tune the work function of graphene oxide films with unprecedented precision of only a few milli electronvolts.

3.
ACS Appl Mater Interfaces ; 10(26): 22520-22528, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29812895

RESUMEN

The thickness of graphene films can be accurately determined by optical contrast spectroscopy. However, this becomes challenging and complicated when the flake size reduces to the micrometer scale, where the contrast spectrum is sensitively dependent on the polarization and incident angle of light. Here, we report accurate measurement of the optical contrast spectra of micrometer-sized few-layer graphene flakes on Au substrate. Using a high-resolution optical microscopy with a 100× magnification objective, we accurately determined the layer numbers of flakes as small as one micrometer in lateral size. We developed a theoretical model to accurately take into account the appropriate contribution of light incident at various angles and polarizations, which matched the experimental results extremely well. Furthermore, we demonstrate that the optical contrast spectroscopy is highly sensitive to detect the adsorption of submonolayer airborne hydrocarbon molecules, which can reveal whether graphene is contaminated. Though the technique was demonstrated on graphene, it can be readily generalized to many other two-dimensional materials, which opens new avenues for developing miniaturized and ultrasensitive label-free molecular sensors.

4.
Nanotechnology ; 29(27): 275205, 2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29664413

RESUMEN

Metals have been increasingly used as substrates in devices based on two-dimensional (2D) materials. However, the high reflectivity of bulk metals results in low optical contrast (<3%) and therefore poor visibility of transparent mono- and few-layer 2D materials on these surfaces. Here we demonstrate that by engineering the complex reflectivity of a purpose-designed multilayer heterostructure composed of thin Au films (2-8 nm) on SiO2/Si substrate, the optical contrast of graphene and graphene oxide (GO) can be significantly enhanced in comparison to bulk Au, up to about 3 and 5 times, respectively. In particular, we achieved ∼17% optical contrast for monolayer GO, which is even 2 times higher than that on bare SiO2/Si substrate. The experimental results are in good agreement with theoretical simulations. This concept is demonstrated for Au, but the methodology is applicable to other metals and can be adopted to design a variety of high-contrast metallic substrates. This will facilitate research and applications of 2D materials in areas such as plasmonics, photonics, catalysis and sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA