Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
2.
Trop Med Infect Dis ; 8(3)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36977164

RESUMEN

Helicobacter pylori infects approximately 50% of the world's population and is considered the major etiological agent of severe gastric diseases, such as peptic ulcers and gastric carcinoma. Increasing resistance to standard antibiotics has now led to an ever-decreasing efficacy of eradication therapies and the development of novel and improved regimens for treatment is urgently required. Substantial progress has been made over the past few years in the identification of molecular mechanisms which are conducive to resistant phenotypes as well as for efficient strategies to counteract strain resistance and to avoid the use of ineffective antibiotics. These involve molecular testing methods, improved salvage therapies, and the discovery of novel and potent antimicrobial compounds. High rates of prevalence and gastric cancer are currently observed in Asian countries, including Japan, China, Korea, and Taiwan, where concomitantly intensive research efforts were initiated to explore advanced eradication regimens aimed at reducing the risk of gastric cancer. In this review, we present an overview of the known molecular mechanisms of antibiotic resistance and discuss recent intervention strategies for H. pylori diseases, with a view of the research progress in Asian countries.

3.
Trop Med Infect Dis ; 7(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548682

RESUMEN

The recombinant, modified leucine-rich repeat protein rhKU_Sej_LRR_2271 has been suggested as a candidate for leptospiral vaccine development since it was predicted to be a transmembrane protein containing leucine-rich repeat motifs and immunogenic epitopes. The immunogenic epitopes showed binding affinities with lower IC50 values than peptides of known antigenic proteins, e.g., LipL32. Moreover, this protein was immunoreactive with hyperimmune sera against several serovars. In this study, we aimed to develop a lateral flow strip test using the rhKU_Sej_LRR_2271 protein for the detection of anti-leptospiral IgG in dogs. The lateral flow assay was performed with 184 dog plasma samples and evaluated with a culture method, 16S ribosomal RNA gene (rss) analysis real-time PCR, and LipL32 ELISA. The culture method failed to detect leptospires in the dog blood samples. Six of nine symptomatic dogs gave positive results with the real-time PCR assay. The lateral flow assay and LipL32 ELISA gave positive results with 59 and 50 dogs, respectively. The sensitivity, specificity, and accuracy of the rhKU_Sej_LRR_2271 lateral flow strip test were 70.00, 82.09, and 78.80%, respectively, when compared with LipL32 ELISA. There was a significant association between the LipL32 ELISA and the rhKU_Sej_LRR_2271 lateral flow assay. The rhKU_Sej_LRR_2271 lateral flow strip test has therefore demonstrated a good potential to detect anti-leptospiral IgG in dogs.

5.
Trop Med Infect Dis ; 7(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36288052

RESUMEN

Domestic and stray dogs can be frequently infected by Leptospira, and thus may represent a source for transmission of this zoonotic disease in Thailand. Here, we have used peptides derived from a recombinant leucine-rich repeat (LRR) protein of Leptospira, rKU_Sej_LRR_2012M, for the development of an indirect enzyme-linked immunosorbent assay (ELISA) aimed at detecting antibodies against Leptospira interrogans, L. borgpetersenii, and L. biflexa, the three major seroprevalences in Thai dogs. The rKU_Sej_LRR_2012M protein is recognized by hyperimmune sera against several leptospiral serovars. The epitope peptides of the rKU_Sej_LRR_2012M showed binding affinities with lower IC50 values than peptides of known antigenic protein LipL32. Four peptides, 2012-3T, 2012-4B, 2012-5B and pool 2012-B, were specifically recognized by rabbit hyperimmune sera against nine serovars from three Leptospira spp. The indirect peptide-based ELISAs with these four peptides were evaluated with the LipL32 ELISA by using a receiver-operator curve (ROC) analysis. All peptides had an area under the curve of ROC (AUC) greater than 0.8, and the sum of sensitivity and specificity for each peptide was greater than 1.5. The degree of agreement of 2012-3T and pool 2012-B and 2012-4B and 2012-5B peptides were in moderate-to-good levels with kappa values of 0.41-0.60 and 0.61-0.80, when compared with LipL32, respectively. This finding would suggest an excellent capability of the 2012-4B and 2012-5B peptide-based ELISAs assay for the diagnosis of canine leptospiral infections.

6.
ScientificWorldJournal ; 2022: 8924023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958801

RESUMEN

Helicobacter pylori infection causes gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma, and gastric cancer and can also promote thrombosis. It is estimated that approximately 4.5 billion individuals are infected, thus rendering H. pylori the most prevalent microbial pathogen. Currently established regimes for antibiotic treatment are massively challenged by increasing drug resistance and the development of novel antimicrobial therapies is urgently required. The antibiotic capreomycin is clinically used against multiple drug-resistant strains of Mycobacterium tuberculosis. It targets the complex between TlyA, a hemolysin- and RNA-binding protein, and the bacterial rRNA. In this study we have explored the possible antibacterial effects of capreomycin against several strains of H. pylori and found only moderate activity which was comparable to metronidazole-resistant strains. Molecular docking of capreomycin to TlyA proteins from H. pylori and M. tuberculosis identified several residues within TlyA which interact with the drug; however, binding affinities of H. pylori- TlyA for capreomycin appear to be higher than those of Mycobacterium- TlyA. The data suggest that capreomycin may warrant further investigations into its potential use as antibiotic against H. pylori.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Mycobacterium tuberculosis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Capreomicina/farmacología , Capreomicina/uso terapéutico , Farmacorresistencia Bacteriana , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/genética , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/metabolismo
7.
Trop Med Infect Dis ; 7(8)2022 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-36006254

RESUMEN

This study aimed to develop simple diagnostic guidelines which would be useful for the early detection of severe dengue infections. Retrospective data of patients with dengue infection were reviewed. Patients with diagnosed dengue infection were categorized in line with the International Statistical Classification of Diseases (ICD-10): A90, dengue fever; A91, dengue hemorrhagic fever; and A910, dengue hemorrhagic fever with shock. A total of 302 dengue-infected patients were enrolled, of which 136 (45%) were male and 166 (55%) were female. Multivariate analysis was conducted to determine independent diagnostic predictors of severe dengue infection and to convert simple diagnostic guidelines into a scoring system for disease severity. Coefficients for significant predictors of disease severity generated by ordinal multivariable logistic regression analysis were transformed into item scores. The derived total scores ranged from 0 to 38.6. The cut-off score for predicting dengue severity was higher than 14, with an area under the receiver operating curve (AUROC) of 0.902. The predicted positive value (PPV) was 68.7% and the negative predictive value (NPV) was 94.1%. Our study demonstrates that several diagnostic parameters can be effectively combined into a simple score sheet with predictive value for the severity evaluation of dengue infection.

8.
Trop Med Infect Dis ; 8(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36668913

RESUMEN

Leucine-rich repeat (LRR) proteins are advocated for being assessed in vaccine development. Leptospiral LRR proteins were identified recently in silico from the genome of Leptospira borgpetersenii serogroup Sejroe, the seroprevalence of leptospiral infections of cattle in Thailand. Two LRR recombinant proteins, rKU_Sej_LRR_2012M (2012) and rhKU_Sej_LRR_2271 (2271), containing predicted immunogenic epitopes, were investigated for their cross-protective efficacies in an acute leptospirosis model with heterologous Leptospira serovar Pomona, though, strains from serogroup Sejroe are host-adapted to bovine, leading to chronic disease. Since serovar Pomona is frequently reported as seropositive in cattle, buffaloes, pigs, and dogs in Thailand and causes acute and severe leptospirosis in cattle by incidental infection, the serogroup Sejroe LRR proteins were evaluated for their cross-protective immunity. The protective efficacies were 37.5%, 50.0%, and 75.0% based on the survival rate for the control, 2012, and 2271 groups, respectively. Sera from 2012-immunized hamsters showed weak bactericidal action compared to sera from 2271-immunized hamsters (p < 0.05). Therefore, bacterial tissue clearances, inflammatory responses, and humoral and cell-mediated immune (HMI and CMI) responses were evaluated only in 2271-immunized hamsters challenged with virulent L. interrogans serovar Pomona. The 2271 protein induced prompt humoral immune responses (p < 0.05) and leptospiral tissue clearance, reducing tissue inflammation in immunized hamsters. In addition, protein 2271 and its immunogenic peptides stimulated splenocyte lymphoproliferation and stimulated both HMI and CMI responses by activating Th1 and Th2 cytokine gene expression in vaccinated hamsters. Our data suggest that the immunogenic potential renders rhKU_Sej_LRR_2271 protein a promising candidate for the development of a novel cross-protective vaccine against animal leptospirosis.

9.
Protein Pept Lett ; 28(6): 643-650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33183185

RESUMEN

BACKGROUND: Gastric pathogen Helicobacter pylori secretes VacA cytotoxin displaying a high degree of polymorphic variations of which the highest VacA pathogenicity correlates with m1-type variant followed by VacA-m2. OBJECTIVE: To comparatively evaluate expression in Escherichia coli of the mature VacA variants (m1- and m2-types) and their 33- and 55/59-kDa domains fused with His(6) tag at N- or C-terminus. METHODS: All VacA clones expressed in E. coli TOP10™ were analyzed by SDS-PAGE and Western blotting. VacA inclusions were solubilized under native conditions (~150-rpm shaking at 37°C for 2 h in 20 mM HEPES (pH7.4) and 150 mM NaCl). Membrane-perturbing and cytotoxic activities of solubilized VacA proteins were assessed via liposome-entrapped dye leakage and resazurin- based cell viability assays, respectively. VacA binding to human gastric adenocarcinoma cells was assessed by immunofluorescence microscopy. Side-chain hydrophobicity of VacA was analyzed through modeled structures constructed by homology- and ab initio-based modeling. RESULTS: Both full-length VacA-m1 and 33-kDa domain were efficiently expressed only in the presence of N-terminal extension while its 55-kDa domain was capably expressed with either N- or Cterminal extension. Selectively enhanced expression was also observed for VacA-m2. Protein expression profiles revealed a critical period in IPTG-induced production of the 55-kDa domain with N-terminal extension unlike its C-terminal extension showing relatively stable expression. Both VacA- m1 isolated domains were able to independently bind to cultured gastric cells similar to the full- length toxin, albeit the 33-kDa domain exhibited significantly higher activity of membrane perturbation than others. Membrane-perturbing and cytotoxic activities observed for VacA-m1 appeared to be higher than those of VacA-m2. Homology-based modeling and sequence analysis suggested a potential structural impact of non-polar residues located at the N-terminus of the mature VacA toxin and its 33-kDa domain. CONCLUSION: Our data provide molecular insights into selective influence of the N-terminally added tag on efficient expression of recombinant VacA variants, signifying biochemical and biological implications of the hydrophobic stretch within the N-terminal domain.


Asunto(s)
Proteínas Bacterianas , Proteínas Recombinantes de Fusión , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Línea Celular Tumoral , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Escherichia coli/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Estómago/citología
10.
Protein Expr Purif ; 175: 105696, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32681955

RESUMEN

Vacuolating cytotoxin A (VacA) is a highly polymorphic virulence protein produced by the human gastric pathogen Helicobacter pylori which can cause gastritis, peptic ulcer and gastric cancer. Here, we present an optimized protein preparation of the mature full-length VacA variants (m1-and m2-types) and their 33-kDa N-terminal and 55/59-kDa C-terminal domains as biologically active recombinant proteins fused with an N-terminal His(6) tag. All recombinant VacA constructs were over-expressed in Escherichia coli as insoluble inclusions which were soluble when phosphate buffer (pH 7.4) was supplemented with 5-6 M urea. Upon immobilized-Ni2+ affinity purification under 5-M urea denaturing conditions, homogenous products (>95% purity) of 55/59-kDa domains were consistently obtained while only ~80% purity of both mature VacA variants and the 33-kDa truncate was achieved, thus requiring additional purification by size-exclusion chromatography. After successive refolding via optimized stepwise dialysis, all refolded VacA proteins were proven to possess both cytotoxic and vacuolating activity against cultured human gastric epithelial cells albeit the activity observed for VacA-m2 was lower than the m1-type variant. Such an optimized protocol described herein was effective for production of high-purity recombinant VacA proteins in large amounts (~30-40 mg per liter culture) that would pave the way for further studies on sequence-structure and function relationships of different VacA variants.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Helicobacter pylori/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Helicobacter pylori/metabolismo , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
11.
Biochem Biophys Res Commun ; 514(2): 365-371, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31040022

RESUMEN

Although the TlyA hemolysin from Helicobacter pylori has been implicated as a potential virulence factor involved in mediating host cell colonization and hence disease progression, its structural determinants underlying the biological activity are still largely uncertain. In this study, an important role of the formation of a particular disulfide bond for functional oligomeric assembly of the H. pylori TlyA toxin was evidently elucidated. The 27-kDa TlyA recombinant protein was overexpressed in Escherichia coli, subsequently purified to near homogeneity by cation exchange chromatography, and proven to be hemolytically active against sheep erythrocytes. Additionally, TlyA-induced hemolytic activity was significantly diminished under conditions of disulfide bond reduction with a thiol-reducing agent, dithiothreitol. When the purified TlyA protein was subjected to modified SDS-PAGE under non-reducing conditions, the presence of an oligomeric state of this protein was clearly revealed by its apparent molecular mass of ∼48 kDa. Recombinant E. coli cells expressing TlyA also displayed contact-dependent hemolysis of erythrocytes, suggesting TlyA localization at the bacterial outer membrane and thus supporting the formation of disulfide-bonded TlyA. Homology-based modeling and in silico structural assembly analysis of TlyA signified potential intermolecular, rather than intramolecular, disulfide bonding through Cys124 and Cys128. Subsequently, single substitution of either of these Cys residues with Ser severely affected the oligomeric assembly of both TlyA mutants and hence abolished their hemolytic activity. Altogether, our present data provide pivotal evidence that the formation of intermolecular disulfide bonding between Cys124 and Cys128 plays a critical role in structural assembly of a biologically active-TlyA oligomer.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Disulfuros/metabolismo , Helicobacter pylori , Hemólisis , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Simulación por Computador , Cisteína/química , Disulfuros/química , Electroforesis en Gel de Poliacrilamida , Eritrocitos/patología , Escherichia coli , Helicobacter pylori/química , Helicobacter pylori/metabolismo , Mutación , Oxidación-Reducción , Ovinos , Factores de Virulencia/análisis , Factores de Virulencia/genética
12.
Protein Expr Purif ; 151: 106-112, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29944958

RESUMEN

Lysostaphin, a bacteriolytic toxin from Staphylococcus simulans, is a Zn2+-dependent endopeptidase that cleaves pentaglycine cross-bridges found in peptidoglycan of certain Staphylococci. Here, we have investigated a critical influence of Zn2+ ions on lysostaphin-induced bioactivity. Initially, we succeeded in producing a large amount with high purity of the 28-kDa His-tagged mature lysostaphin via soluble expression in Escherichia coli and subsequent purification via immobilized-Ni2+ affinity chromatography (IMAC). The purified monomeric bacteriocin exhibited concentration-dependent bioactivity against S. aureus and its methicillin-resistant strain through cell-wall hydrolysis rather than membrane perturbation. Following pre-incubation of the purified lysostaphin with exogenous Zn2+, a marked inhibition in staphylolytic activity was observed. When the pre-mixture was exposed to 1,10-phenanthroline (PNT, a Zn2+-chelator), the adverse effect of the exogenous Zn2+ on bioactivity was greatly decreased. Conversely, lysostaphin pre-treated with excess PNT retained relatively high bioactivity, indicating ineffective chelation of PNT to detach the catalytic Zn2+ from the active-site pocket. Structural analysis of the lysostaphin-catalytic domain together with amino acid sequence alignments of lysostaphin-like endopeptidases revealed a potential extraneous Zn2+-binding site found in close proximity to the Zn2+-coordinating active site. Overall our results provide more insights into an adverse influence of exogenous Zn2+ ions on staphylolytic activity of the purified Zn2+-dependent endopeptidase lysostaphin, implicating the presence of an extraneous inhibitory metal-binding site.


Asunto(s)
Antibacterianos/aislamiento & purificación , Lisostafina/aislamiento & purificación , Staphylococcus/enzimología , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Biocatálisis , Cationes Bivalentes , Pared Celular/metabolismo , Quelantes/química , Quelantes/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Farmacorresistencia Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Lisostafina/biosíntesis , Lisostafina/farmacología , Fenantrolinas/química , Fenantrolinas/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Staphylococcus aureus/efectos de los fármacos , Zinc/química , Zinc/farmacología
13.
Curr Microbiol ; 75(2): 223-230, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29032467

RESUMEN

The membrane perturbing action of the VacA toxin from Helicobacter pylori is responsible for vacuole formation in intracellular compartments and the induction of apoptosis. The VacA toxin contains 2 major domains, p33 and p55, which are involved in receptor binding and membrane pore formation, respectively. Improved methodologies for VacA purification and assays are urgently needed for further detailed investigations on the mechanism of action of this significant virulence factor. We found that by fusing mouse DHFR with the N-terminus of the full-length (p88) VacA toxin, expression levels in recombinant E. coli were substantially increased when compared to the conventional (His)6-tagged protein. The DHFR-VacA fusion protein was active in sulforhodamine dye-release assays using liposomes at acidic pH in a concentration-dependent manner. Enzymatic activity of DHFR in the fusion protein was comparable to a commercial reference sample of purified DHFR; however, activity was insensitive to inhibition by methotrexate. Our findings suggest that the VacA p88 toxin with a modified N-terminus still maintains its capability for membrane insertion and that pH-dependent conformational changes occur during interaction of VacA with membranes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Colorantes/metabolismo , Liposomas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Animales , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Membranas/metabolismo , Ratones , Proteínas Recombinantes de Fusión/genética , Tetrahidrofolato Deshidrogenasa/genética
14.
Toxins (Basel) ; 9(3)2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300777

RESUMEN

The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln574 or Glu581 in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin). All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni2+-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R) and negative-charge elimination (E581Q) appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E) completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4), all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively-charged side-chains substituted at positions Gln574 and Glu581 in the pore-lining α3 to the enhanced hemolytic activity and ion-channel opening of CyaA-Hly that actually mimics the highly-active RTX (repeat-in-toxin) cytolysins.


Asunto(s)
Toxina de Adenilato Ciclasa/química , Proteínas Hemolisinas/química , Hemólisis , Activación del Canal Iónico , Toxina de Adenilato Ciclasa/genética , Toxina de Adenilato Ciclasa/metabolismo , Secuencia de Aminoácidos , Animales , Eritrocitos , Escherichia coli/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Alineación de Secuencia , Ovinos
15.
Biochim Biophys Acta Biomembr ; 1859(3): 312-318, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27993565

RESUMEN

Previously, the ~130-kDa CyaA-hemolysin domain (CyaA-Hly) from Bordetella pertussis co-expressed with CyaC-acyltransferase in Escherichia coli was demonstrated to be palmitoylated at Lys983 and thus activated its hemolytic activity against target erythrocytes. Here, we report the functional importance of Lys983-palmitoylation for membrane insertion and pore formation of CyaA-Hly. Intrinsic fluorescence emissions of both non-acylated CyaA-Hly (NA/CyaA-Hly) and CyaA-Hly were indistinguishable, suggesting no severe conformational change upon acylation at Lys983. Following pre-incubation of sheep erythrocytes with NA/CyaA-Hly, there was a drastic decrease in CyaA-Hly-induced hemolysis. Direct interactions between NA/CyaA-Hly and target erythrocyte membranes were validated via membrane-binding assays along with Western blotting, suggestive of acylation-independent capability of NA/CyaA-Hly to interact with erythrocyte membranes. As compared with CyaA-Hly, NA/CyaA-Hly displayed a slower rate of incorporation into DOPC:DOPE:Ch or DiPhyPC bilayers under symmetrical conditions (1M KCl, 10mM HEPES, pH7.4) and formed channels exhibiting different conductance. Further analysis revealed that channel-open lifetime in DOPC:DOPE:Ch bilayers of NA/CyaA-Hly was much shorter than that of the acylated form, albeit slightly shorter lifetime found in DiPhyPC bilayers. Sequence alignments of the Lys983-containing CyaA-segment with those of related RTX-cytolysins revealed a number of highly conserved hydrophobic residues and a Lys/Arg cluster that is predicted be important for toxin-membrane interactions. Altogether, our data disclosed that the Lys983-linked palmitoyl group is not directly involved in either binding to target erythrocyte membranes or toxin-induced channel conductivity, but rather required for efficient membrane insertion and pore formation of the acylated CyaA-Hly domain.


Asunto(s)
Toxina de Adenilato Ciclasa/metabolismo , Bordetella pertussis/metabolismo , Acilación , Toxina de Adenilato Ciclasa/química , Toxina de Adenilato Ciclasa/genética , Secuencia de Aminoácidos , Animales , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Hemólisis , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Ovinos
16.
Curr Microbiol ; 73(6): 930-937, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27686341

RESUMEN

Helicobacter pylori is a human-specific Gram-negative pathogenic bacterium which colonizes the gastric mucosal layer in the stomach causing diseases such as peptic ulcer, adenocarcinoma, and gastric lymphoma. It is estimated that approximately half of the world's population is infected with H. pylori making it the most intensively characterized microbial pathogen up to now. Hemolysis has been suggested to significantly contribute to colonization of the stomach and disease progression by H. pylori. In a number of earlier studies, TlyA was characterized as a putative pore-forming cytolysin. Although a few observations in the literature suggest a role for TlyA as significant virulence factor of H. pylori, the molecular and structural characterization of this protein is much curtailed at present. Given the intensive characterization of numerous H. pylori virulence factors over the past decade, surprisingly little information exists for the TlyA toxin and its significance for pathogenesis. This review provides a brief overview on microbial hemolysis and its role for pathogenesis and discusses recent research efforts aimed at an improved understanding of the role of the 'non-conventional' hemolysin and its associated RNA methyltransferase TlyA from H. pylori.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Proteínas Hemolisinas/metabolismo , Factores de Virulencia/metabolismo , Animales , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Proteínas Hemolisinas/genética , Humanos , Virulencia
17.
Toxins (Basel) ; 8(4): 99, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27043627

RESUMEN

Previously, the 126-kDa CyaA-hemolysin (CyaA-Hly) fragment cloned from Bordetella pertussis--the causative agent of whooping cough--and functionally expressed in Escherichia coli was revealed as a key determinant for CyaA-mediated hemolysis against target erythrocytes. Here, phagemid-transfected E. coli clones producing nanobodies capable of binding to CyaA-Hly were selected from a humanized-camel VH/VHH phage-display library. Subsequently verified for binding activities by indirect ELISA and Western blotting, four CyaA-Hly-specific nanobodies were obtained and designated according to the presence/absence of VHH-hallmark amino acids as VHH2, VH5, VH18 and VHH37. In vitro neutralization assay revealed that all four ~17-kDa His-tagged VH/VHH nanobodies, in particular VHH37, which were over-expressed as inclusions and successfully unfolded-refolded, were able to effectively inhibit CyaA-Hly-mediated hemolysis. Phage-mimotope searching revealed that only peptides with sequence homologous to Linker 1 connecting Blocks I and II within the CyaA-RTX subdomain were able to bind to these four CyaA-Hly-specific nanobodies. Structural analysis of VHH37 via homology modeling and intermolecular docking confirmed that this humanized nanobody directly interacts with CyaA-RTX/Linker 1 through multiple hydrogen and ionic bonds. Altogether, our present data demonstrate that CyaA-RTX/Linker 1 could serve as a potential epitope of CyaA-protective antigen that may be useful for development of peptide-based pertussis vaccines. Additionally, such toxin-specific nanobodies have a potential for test-driven development of a ready-to-use therapeutic in passive immunization for mitigation of disease severity.


Asunto(s)
Toxina de Adenilato Ciclasa/metabolismo , Anticuerpos Neutralizantes/metabolismo , Antígenos Bacterianos/metabolismo , Epítopos/metabolismo , Proteínas Hemolisinas/metabolismo , Anticuerpos de Dominio Único/metabolismo , Toxina de Adenilato Ciclasa/genética , Anticuerpos Neutralizantes/genética , Antígenos Bacterianos/genética , Bordetella pertussis , Eritrocitos/metabolismo , Proteínas Hemolisinas/genética , Modelos Moleculares , Anticuerpos de Dominio Único/genética
18.
Toxicon ; 118: 27-35, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27105670

RESUMEN

Helicobacter pylori is associated with severe and chronic diseases of the stomach and duodenum such as peptic ulcer, non-cardial adenocarcinoma and gastric lymphoma, making Helicobacter pylori the only bacterial pathogen which is known to cause cancer. The worldwide rate of incidence for these diseases is extremely high and it is estimated that about half of the world's population is infected with H. pylori. Among the bacterial virulence factors is the vacuolating cytotoxin A (VacA), which represents an important determinant of pathogenicity. Intensive characterization of VacA over the past years has provided insight into an ample variety of mechanisms contributing to host-pathogen interactions. The toxin is considered as an important target for ongoing research for several reasons: i) VacA displays unique features and structural properties and its mechanism of action is unrelated to any other known bacterial toxin; ii) the toxin is involved in disease progress and colonization by H. pylori of the stomach; iii) VacA is a potential and promising candidate for the inclusion as antigen in a vaccine directed against H. pylori and iv) the vacA gene is characterized by a high allelic diversity, and allelic variants contribute differently to the pathogenicity of H. pylori. Despite the accumulation of substantial data related to VacA over the past years, several aspects of VacA-related activity have been characterized only to a limited extent. The biologically most significant effect of VacA activity on host cells is the formation of membrane pores and the induction of vacuole formation. This review discusses recent findings and advances on structure-function relations of the H. pylori VacA toxin, in particular with a view to membrane channel formation, oligomerization, receptor binding and apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Membrana Celular/efectos de los fármacos , Helicobacter pylori/metabolismo , Modelos Moleculares , Alelos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Humanos , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/metabolismo , Moduladores del Transporte de Membrana/toxicidad , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad , Polimorfismo Genético , Porosidad/efectos de los fármacos , Conformación Proteica , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteolisis
19.
Biochem Biophys Res Commun ; 466(1): 76-81, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26325465

RESUMEN

The 126-kDa Bordetella pertussis CyaA-hemolysin (CyaA-Hly) was previously expressed in Escherichia coli as a soluble precursor that can be acylated to retain hemolytic activity. Here, we investigated structural and functional characteristics of a ∼100-kDa isolated RTX (Repeat-in-ToXin) subdomain (CyaA-RTX) of CyaA-Hly. Initially, we succeeded in producing a large amount with high purity of the His-tagged CyaA-RTX fragment and in establishing the interaction of acylated CyaA-Hly with sheep red blood cell (sRBC) membranes by immuno-localization. Following pre-incubation of sRBCs with non-acylated CyaA-Hly or with the CyaA-RTX fragment that itself produces no hemolytic activity, there was a dramatic decrease in CyaA-Hly-induced hemolysis. When CyaA-RTX was pre-incubated with anti-CyaA-RTX antisera, the capability of CyaA-RTX to neutralize the hemolytic activity of CyaA-Hly was greatly decreased. A homology-based model of the 100-kDa CyaA-RTX subdomain revealed a loop structure in Linker II sharing sequence similarity to human WW domains. Sequence alignment of Linker II with the human WW-domain family revealed highly conserved aromatic residues important for protein-protein interactions. Altogether, our present study demonstrates that the recombinant CyaA-RTX subdomain retains its functionality with respect to binding to target erythrocyte membranes and the WW-homologous region in Linker II conceivably serves as a functional segment required for receptor-binding activity.


Asunto(s)
Toxina de Adenilato Ciclasa/metabolismo , Bordetella pertussis/fisiología , Membrana Eritrocítica/microbiología , Interacciones Huésped-Patógeno , Tos Ferina/metabolismo , Tos Ferina/veterinaria , Toxina de Adenilato Ciclasa/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Hemólisis , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Ovinos , Enfermedades de las Ovejas/metabolismo
20.
Toxins (Basel) ; 7(5): 1486-96, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25941766

RESUMEN

Previously, the 126-kDa Bordetella pertussis CyaA pore-forming/hemolysin (CyaA-Hly) domain was shown to retain its hemolytic activity causing lysis of susceptible erythrocytes. Here, we have succeeded in producing, at large quantity and high purity, the His-tagged CyaA-Hly domain over-expressed in Escherichia coli as a soluble hemolytically-active form. Quantitative assays of hemolysis against sheep erythrocytes revealed that the purified CyaA-Hly domain could function cooperatively by forming an oligomeric pore in the target cell membrane with a Hill coefficient of ~3. When the CyaA-Hly toxin was incorporated into planar lipid bilayers (PLBs) under symmetrical conditions at 1.0 M KCl, 10 mM HEPES buffer (pH 7.4), it produced a clearly resolved single channel with a maximum conductance of ~35 pS. PLB results also revealed that the CyaA-Hly induced channel was unidirectional and opened more frequently at higher negative membrane potentials. Altogether, our results first provide more insights into pore-forming characteristics of the CyaA-Hly domain as being the major pore-forming determinant of which the ability to induce such ion channels in receptor-free membranes could account for its cooperative hemolytic action on the target erythrocytes.


Asunto(s)
Toxina de Adenilato Ciclasa/química , Eritrocitos/fisiología , Proteínas Hemolisinas/química , Toxina de Adenilato Ciclasa/farmacología , Animales , Bordetella pertussis , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/fisiología , Eritrocitos/efectos de los fármacos , Proteínas Hemolisinas/farmacología , Hemólisis/efectos de los fármacos , Canales Iónicos/fisiología , Membrana Dobles de Lípidos , Porosidad , Estructura Terciaria de Proteína , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...