Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Neuron ; 109(4): 611-628.e8, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33321071

RESUMEN

Migraine with aura is a common but poorly understood sensory circuit disorder. Monogenic models allow an opportunity to investigate its mechanisms, including spreading depolarization (SD), the phenomenon underlying migraine aura. Using fluorescent glutamate imaging, we show that awake mice carrying a familial hemiplegic migraine type 2 (FHM2) mutation have slower clearance during sensory processing, as well as previously undescribed spontaneous "plumes" of glutamate. Glutamatergic plumes overlapped anatomically with a reduced density of GLT-1a-positive astrocyte processes and were mimicked in wild-type animals by inhibiting glutamate clearance. Plume pharmacology and plume-like neural Ca2+ events were consistent with action-potential-independent spontaneous glutamate release, suggesting plumes are a consequence of inefficient clearance following synaptic release. Importantly, a rise in basal glutamate and plume frequency predicted the onset of SD in both FHM2 and wild-type mice, providing a novel mechanism in migraine with aura and, by extension, the other neurological disorders where SD occurs.


Asunto(s)
Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Migraña con Aura/genética , Migraña con Aura/metabolismo , Modelos Genéticos , Transducción de Señal/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
3.
Front Cell Neurosci ; 12: 294, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283302

RESUMEN

Migraine is a disabling neurological disorder affecting 12% of the world's population. Stress is a major reported trigger and exacerbator of migraine. We evaluated the effects of two chronic stress paradigms on migraine relevant phenotypes in male C57Bl/6 mice. Methods: Fifty six mice were used in a 14 day social defeat stress (SDS) and twenty three mice were used in a 40 day chronic variable stress (CVS) paradigm. Anxiety measures were evaluated using the open field and elevated plus maze (EPM) tests. Migraine relevant phenotypes were evaluated using the nitroglycerin (NTG) and cortical spreading depression (CSD) models. Results: Stress sensitive SDS mice and chronically stressed CVS mice showed decreased exploration in the open field and reduced time spent in the open arms of the EPM compared to controls. Stress sensitive and resilient SDS mice had increased serum corticosterone levels, and stressed mice in the CVS paradigm had decreased weight gain compared to controls, providing combined behavioral and physiological evidence of a stress response. In the CVS paradigm but not the SDS paradigm, the stressed group showed a significant decrease in baseline mechanical withdrawal threshold compared to controls. All groups showed a significant reduction in withdrawal threshold after treatment with NTG, but the reduction was not larger in SDS or CVS than in controls. Interestingly, stress resilient SDS mice showed a rapid recovery from NTG effects that was not seen in other groups. No difference in CSD frequency or velocity was seen between stress and control mice in either stress paradigms. Conclusion: We observed distinct effects of stress on generalized pain response, migraine relevant pain, and migraine relevant excitability. CVS but not SDS was associated with a reduced mechanical withdrawal threshold, consistent with a generalized pain response to chronic stress. Neither SDS nor CVS exacerbated phenotypes considered specifically relevant to migraine - withdrawal to NTG, and susceptibility to CSD. However, the significantly reduced response of stress resilient mice to the NTG stimulus may represent a specific migraine-resistant phenotype.

4.
PLoS Biol ; 15(8): e2002257, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28837622

RESUMEN

While innate behaviors are conserved throughout the animal kingdom, it is unknown whether common signaling pathways regulate the development of neuronal populations mediating these behaviors in diverse organisms. Here, we demonstrate that the Wnt/ß-catenin effector Lef1 is required for the differentiation of anxiolytic hypothalamic neurons in zebrafish and mice, although the identity of Lef1-dependent genes and neurons differ between these 2 species. We further show that zebrafish and Drosophila have common Lef1-dependent gene expression in their respective neuroendocrine organs, consistent with a conserved pathway that has diverged in the mouse. Finally, orthologs of Lef1-dependent genes from both zebrafish and mouse show highly correlated hypothalamic expression in marmosets and humans, suggesting co-regulation of 2 parallel anxiolytic pathways in primates. These findings demonstrate that during evolution, a transcription factor can act through multiple mechanisms to generate a common behavioral output, and that Lef1 regulates circuit development that is fundamentally important for mediating anxiety in a wide variety of animal species.


Asunto(s)
Ansiedad/prevención & control , Hipotálamo/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/patología , Conducta Animal , Biomarcadores/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Hipotálamo/citología , Hipotálamo/patología , Factor de Unión 1 al Potenciador Linfoide/genética , Masculino , Ratones Noqueados , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/patología , Especificidad de la Especie , Factores de Transcripción/genética , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Epilepsia ; 58(2): 239-246, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28098336

RESUMEN

OBJECTIVE: Potential clinical utility of galanin or peptidic analogs has been hindered by poor metabolic stability, lack of brain penetration, and hyperglycemia due to galanin receptor subtype 1 (GalR1) activation. NAX 810-2, a galanin receptor subtype 2 (GalR2)-preferring galanin analog, possesses 15-fold greater affinity for GalR2 over GalR1 and protects against seizures in the mouse 6 Hz, corneal kindling, and Frings audiogenic seizure models. The purpose of these studies was to further evaluate the preclinical efficacy and pharmacokinetics of NAX 810-2 in mice. METHODS: NAX 810-2 was administered by intravenous (i.v.; tail vein, bolus) injection to fully kindled (corneal kindling assay) or naive CF-1 mice (6 Hz assay and pharmacokinetic studies). Plasma NAX 810-2 levels were determined from trunk blood samples. NAX 810-2 was also added to human plasma at various concentrations for determination of plasma protein binding. RESULTS: In the mouse corneal kindling model, NAX 810-2 dose-dependently blocked seizures following intravenous administration (median effective dose [ED50 ], 0.5 mg/kg). In the mouse 6 Hz (32 mA) seizure model, it was demonstrated that NAX 810-2 dose-dependently blocked seizures following bolus administration (0.375-1.5 mg/kg, i.v.; ED50 , 0.7 mg/kg), with a time-to-peak effect of 0.5 h posttreatment. Motor impairment was observed at 1.5 mg/kg, i.v., whereas one-half of this dose, 0.75 mg/kg, i.v., was maximally effective in the 6 Hz test. Plasma levels of NAX 810-2 show linear pharmacokinetics following intravenous administration and a half-life of 1.2 h. Functional agonist activity studies demonstrate that NAX 810-2 effectively activates GalR2 at therapeutic concentrations. SIGNIFICANCE: These studies further suggest the potential utility of NAX 810-2 as a novel therapy for epilepsy.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/farmacocinética , Evaluación Preclínica de Medicamentos , Receptor de Galanina Tipo 2/química , Convulsiones/tratamiento farmacológico , Animales , Anticonvulsivantes/farmacología , Área Bajo la Curva , Córnea/inervación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/efectos adversos , Galanina/análogos & derivados , Galanina/farmacocinética , Galanina/uso terapéutico , Inyecciones Intravenosas , Excitación Neurológica/efectos de los fármacos , Masculino , Ratones , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/etiología , Unión Proteica/efectos de los fármacos , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/antagonistas & inhibidores , Convulsiones/complicaciones , Convulsiones/etiología , Factores de Tiempo
6.
J Cereb Blood Flow Metab ; 37(5): 1748-1762, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27562866

RESUMEN

Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease.


Asunto(s)
Encéfalo/fisiopatología , Depresión de Propagación Cortical/efectos de los fármacos , Modelos Neurológicos , Cloruro de Potasio/farmacología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Imagen Óptica , Ratas Sprague-Dawley , Análisis de Ondículas
7.
Pharmacol Res ; 117: 129-139, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27890817

RESUMEN

Chronic pain is a multifactorial disease comprised of both inflammatory and neuropathic components that affect ∼20% of the world's population. sec-Butylpropylacetamide (SPD) is a novel amide analogue of valproic acid (VPA) previously shown to possess a broad spectrum of anticonvulsant activity. In this study, we defined the pharmacokinetic parameters of SPD in rat and mouse, and then evaluated its antinociceptive potential in neuropathic and acute inflammatory pain models. In the sciatic nerve ligation (SNL) model of neuropathic pain, SPD was equipotent to gabapentin and more potent than its parent compound VPA. SPD also showed either higher or equal potency to VPA in the formalin, carrageenan, and writhing tests of inflammatory pain. SPD showed no effects on compound action potential properties in a sciatic nerve preparation, suggesting that its mechanism of action is distinct from local anesthetics and membrane stabilizing drugs. SPD's activity in both neuropathic and inflammatory pain warrants its development as a potential broad-spectrum anti-nociceptive drug.


Asunto(s)
Amidas/farmacología , Neuralgia/tratamiento farmacológico , Dolor/tratamiento farmacológico , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacología , Aminas/farmacología , Analgésicos/farmacología , Animales , Ácidos Ciclohexanocarboxílicos/farmacología , Modelos Animales de Enfermedad , Gabapentina , Inflamación/complicaciones , Masculino , Ratones , Dolor/etiología , Ratas , Ratas Sprague-Dawley , Nervio Ciático/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
8.
Cephalalgia ; 36(10): 924-35, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26568161

RESUMEN

BACKGROUND: Though migraine is disabling and affects 12%-15% of the population, there are few drugs that have been developed specifically for migraine prevention. Valproic acid (VPA) is a broad-spectrum antiepileptic drug (AED) that is also used for migraine prophylaxis, but its clinical use is limited by its side effect profile. sec-Butylpropylacetamide (SPD) is a novel VPA derivative, designed to be more potent and tolerable than VPA, that has shown efficacy in animal seizure and pain models. METHODS: We evaluated SPD's antimigraine potential in the cortical spreading depression (CSD) and nitroglycerin (NTG) models of migraine. To evaluate SPD's mechanism of action, we performed whole-cell recordings on cultured cortical neurons and neuroblastoma cells. RESULTS: In the CSD model, the SPD-treated group showed a significantly lower median number of CSDs compared to controls. In the NTG-induced mechanical allodynia model, SPD dose-dependently reduced mechanical sensitivity compared to controls. SPD showed both a significant potentiation of GABA-mediated currents and a smaller but significant decrease in NMDA currents in cultured cortical neurons. Kainic acid-evoked currents and voltage-dependent sodium channel currents were not changed by SPD. CONCLUSIONS: These results demonstrate SPD's potential as a promising novel antimigraine compound, and suggest a GABAergic mechanism of action.


Asunto(s)
Amidas/uso terapéutico , Anticonvulsivantes/uso terapéutico , Trastornos Migrañosos/prevención & control , Trastornos Migrañosos/fisiopatología , Ácido Valproico/análogos & derivados , Amidas/farmacología , Animales , Anticonvulsivantes/farmacología , Línea Celular Tumoral , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Depresión de Propagación Cortical/efectos de los fármacos , Depresión de Propagación Cortical/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico
9.
Epilepsia ; 53(1): 134-46, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22150444

RESUMEN

PURPOSE: sec-Butyl-propylacetamide (SPD) is a one-carbon homolog of valnoctamide (VCD), a central nervous system (CNS)-active amide derivative of valproic acid (VPA) currently in phase II clinical trials. The study reported herein evaluated the anticonvulsant activity of SPD in a battery of rodent seizure and epilepsy models and assessed its efficacy in rat and guinea pig models of status epilepticus (SE) and neuroprotection in an organotypic hippocampal slice model of excitotoxic cell death. METHODS: The anticonvulsant activity of SPD was evaluated in several rodent seizure and epilepsy models, including maximal electroshock (MES), 6-Hz psychomotor; subcutaneous (s.c.) metrazol-, s.c. picrotoxin, s.c. bicuculline, and audiogenic, corneal, and hippocampal kindled seizures following intraperitoneal administration. Results obtained with SPD are discussed in relationship to those obtained with VPA and VCD. SPD was also evaluated for its ability to block benzodiazepine-resistant SE induced by pilocarpine (rats) and soman (rats and guinea pigs) following intraperitoneal administration. SPD was tested for its ability to block excitotoxic cell death induced by the glutamate agonists N-methyl-D-aspartate (NMDA) and kainic acid (KA) using organotypic hippocampal slices and SE-induced hippocampal cell death using FluoroJade B staining. The cognitive function of SPD-treated rats that were protected against pilocarpine-induced convulsive SE was examined 10-14 days post-SE using the Morris water maze (MWM). The relationship between the pharmacokinetic profile of SPD and its efficacy against soman-induced SE was evaluated in two parallel studies following SPD (60 mg/kg, i.p.) administration in the soman SE rat model. KEY FINDINGS: SPD was highly effective and displayed a wide protective index (PI = median neurotoxic dose/median effective dose [TD(50)/ED(50)]) in the standardized seizure and epilepsy models employed. The wide PI values of SPD demonstrate that it is effective at doses well below those that produce behavioral impairment. Unlike VCD, SPD also displayed anticonvulsant activity in the rat pilocarpine model of SE. Thirty minutes after the induction of SE, the calculated rat ED(50) for SPD against convulsive SE in this model was 84 mg/kg. SPD was not neuroprotective in the organotypic hippocampal slice preparation; however, it did display hippocampal neuroprotection in both SE models and cognitive sparing in the MWM, which was associated with its antiseizure effect against pilocarpine-induced SE. When administered 20 and 40 min after SE onset, SPD (100-174 mg/kg) produced long-lasting efficacy (e.g., 4-8 h) against soman-induced convulsive and electrographic SE in both rats and guinea pigs. SPD ED(50) values in guinea pigs were 67 and 92 mg/kg when administered at SE onset or 40 min after SE onset, respectively. Assuming linear pharmacokinetics (PK), the PK-PD (pharmacodynamic) results (rats) suggests that effective SPD plasma levels ranged between 8 and 40 mg/L (20 min after the onset of soman-induced seizures) and 12-50 mg/L (40 min after the onset of soman-induced seizures). The time to peak (t(max)) pharmacodynamic effect (PD-t(max)) occurred after the PK-t(max), suggesting that SPD undergoes slow distribution to extraplasmatic sites, which is likely responsible for antiseizure activity of SPD. SIGNIFICANCE: The results demonstrate that SPD is a broad-spectrum antiseizure compound that blocks SE induced by pilocarpine and soman and affords in vivo neuroprotection that is associated with cognitive sparing. Its activity against SE is superior to that of diazepam in terms of rapid onset, potency, and its effect on animal mortality and functional improvement.


Asunto(s)
Anticonvulsivantes/farmacología , Anticonvulsivantes/farmacocinética , Convulsiones/tratamiento farmacológico , Estado Epiléptico/tratamiento farmacológico , Ácido Valproico/química , Amidas/química , Amidas/farmacocinética , Amidas/farmacología , Animales , Anticonvulsivantes/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Cobayas , Hipocampo/efectos de los fármacos , Masculino , Ratones , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Resultado del Tratamiento , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacocinética , Ácido Valproico/farmacología
10.
Epilepsia ; 51(10): 1944-53, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20738383

RESUMEN

PURPOSE: α-Fluoro-2,2,3,3-tetramethylcyclopropanecarboxamide (α-F-TMCD) and α-Cl-TMCD, are α-halo derivatives of TMCD, the corresponding amide of a cyclopropane analog of valproic acid (VPA). This study aimed to comparatively evaluate the pharmacodynamics and pharmacokinetics of α-F-TMCD and α-Cl-TMCD in rodent models of epilepsy and for antiepileptic drug (AED)-induced teratogenicity. The potential of α-F-TMCD as an antiallodynic and antinociceptive compound was also evaluated. METHODS: α-F-TMCD and α-Cl-TMCD were synthesized. α-Cl-TMCD anticonvulsant activity was evaluated in comparison to VPA in the mouse maximal-electroshock-seizure (MES), Metrazol (scMet), and 6-Hz psychomotor-seizure tests. Neurotoxicity was assessed by the Rotorod-ataxia test. Induction of neural tube defects (NTDs) by α-Cl-TMCD and α-F-TMCD was evaluated after intraperitoneal administration to a mouse strain highly susceptible to VPA-induced teratogenicity. The ability of α-F-TMCD to reduce pain was evaluated in the rat spinal nerve ligation (SNL) model for neuropathic pain and in the formalin test. α-F-TMCD and α-Cl-TMCD pharmacokinetics was evaluated following intraperitoneal (40 mg/kg) and oral (60 mg/kg) administration to rats. RESULTS: α-F-TMCD and α-Cl-TMCD had similar potencies in the 6-Hz test and were more potent than VPA in this model and in the scMet test. Neither induced NTDs, and both exhibited wide safety margins. α-F-TMCD was active in the two pain models, and was found to be equipotent to gabapentin in the SNL model (ED(50) = 37 and 32 mg/kg, respectively). Comparative pharmacokinetic analysis showed that α-Cl-TMCD is less susceptible to liver first-pass effect than α-F-TMCD because of lower total (metabolic) clearance and liver extraction ratio. CONCLUSIONS: Based on their potent anticonvulsant activity and lack of teratogenicity, α-F-TMCD and α-Cl-TMCD have the potential for development as new antiepileptics and central nervous system (CNS) drugs.


Asunto(s)
Amidas/farmacología , Amidas/farmacocinética , Anticonvulsivantes/farmacología , Anticonvulsivantes/farmacocinética , Ciclopropanos/farmacología , Ciclopropanos/farmacocinética , Epilepsia/prevención & control , Ácido Valproico/análogos & derivados , Anomalías Inducidas por Medicamentos/etiología , Anomalías Inducidas por Medicamentos/prevención & control , Amidas/efectos adversos , Analgésicos/farmacocinética , Analgésicos/farmacología , Animales , Ciclopropanos/efectos adversos , Modelos Animales de Enfermedad , Humanos , Ratones , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/prevención & control , Dolor/prevención & control , Pentilenotetrazol/farmacología , Ratas , Ácido Valproico/farmacocinética , Ácido Valproico/farmacología
11.
Neuropharmacology ; 58(8): 1228-36, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20230843

RESUMEN

The purpose of this study was to evaluate the stereoselective pain relieving (antiallodynic) activity, antiallodynic-anticonvulsant correlation, teratogenicity and pharmacokinetic profile of two stereoisomers of valnoctamide (VCD), a CNS-active amide derivative of a chiral isomer of valproic acid (VPA). The individual stereoisomers (diastereomers), (2R,3S)-VCD and (2S,3S)-VCD were synthesized and their antiallodynic activity was evaluated in rats using the spinal nerve ligation model of neuropathic pain. The pharmacokinetic profile of the two stereoisomers was evaluated in rats following: 1) i.p. administration of racemic-VCD, 2) i.p. administration of the individual stereoisomers (2R,3S)-VCD and (2S,3S)-VCD. Teratogenicity of racemic-VCD and its two individual stereoisomers was evaluated in a SWV mouse strain known to be highly susceptible to VPA-induced teratogenicity. Racemic-VCD, (2R,3S)-VCD and (2S,3S)-VCD showed a dose-related reversal of tactile allodynia with ED(50) values of 52, 61 and 39 mg/kg, respectively. (2S,3S)-VCD was significantly more potent than (2R,3S)-VCD but the opposite is true for its anticonvulsant-effect. In the teratogenicity evaluation racemic-VCD and its two individual stereoisomers showed mild embryotoxicity at doses 7-10 times higher than their antiallodynic-ED(50) values, while (2S,3S)-VCD was significantly less embryotoxic than (2R,3S)-VCD and racemic-VCD. Following administration of the racemic-VCD there was an increase in the primary pharmacokinetic parameters of (2S,3S)-VCD but not of (2R,3S)-VCD. This study demonstrates that both racemic-VCD and its stereoisomers show high potency as antiallodynic compounds and possess a wide safety margin. (2S,3S)-VCD is more potent and less embryotoxic than (2R,3S)-VCD and thus, has a potential to become a candidate for development as a new drug for treating neuropathic pain.


Asunto(s)
Amidas/farmacología , Analgésicos/farmacología , Anticonvulsivantes/farmacología , Pérdida del Embrión/inducido químicamente , Defectos del Tubo Neural/inducido químicamente , Amidas/farmacocinética , Amidas/toxicidad , Analgésicos/farmacocinética , Analgésicos/toxicidad , Animales , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/toxicidad , Masculino , Ratones , Dolor/tratamiento farmacológico , Dolor/fisiopatología , Dimensión del Dolor , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad , Tacto
12.
J Med Chem ; 52(22): 7236-48, 2009 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19877649

RESUMEN

Valproic acid (VPA, 1) is a major broad spectrum antiepileptic and central nervous system drug widely used to treat epilepsy, bipolar disorder, and migraine. VPA's clinical use is limited by two severe and life-threatening side effects, teratogenicity and hepatotoxicity. A number of VPA analogues and their amide, N-methylamide and urea derivatives, were synthesized and evaluated in animal models of neuropathic pain and epilepsy. Among these, two amide and two urea derivatives of 1 showed the highest potency as antineuropathic pain compounds, with ED(50) values of 49 and 51 mg/kg for the amides (19 and 20) and 49 and 74 mg/kg for the urea derivatives (29 and 33), respectively. 19, 20, and 29 were equipotent to gabapentin, a leading drug for the treatment of neuropathic pain. These data indicate strong potential for the above-mentioned novel compounds as candidates for future drug development for the treatment of neuropathic pain.


Asunto(s)
Amidas/química , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Dolor/tratamiento farmacológico , Urea/análogos & derivados , Ácido Valproico/química , Ácido Valproico/farmacología , Animales , Anticonvulsivantes/síntesis química , Anticonvulsivantes/uso terapéutico , Electrochoque , Isomerismo , Masculino , Ratones , Dolor/inducido químicamente , Pentilenotetrazol/farmacología , Ratas , Ratas Sprague-Dawley , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Nervios Espinales , Ácido Valproico/síntesis química , Ácido Valproico/uso terapéutico
13.
Birth Defects Res A Clin Mol Teratol ; 82(9): 610-21, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18671279

RESUMEN

BACKGROUND: Although valproic acid (VPA) is used extensively for treating various kinds of epilepsy, it causes hepatotoxicity and teratogenicity. In an attempt to develop a more potent and safer second generation to VPA drug, the amide derivatives of the tetramethylcyclopropyl VPA analogue, 2,2,3,3-tetramethylcyclopropanecarboxamide (TMCD), N-methyl-TMCD (MTMCD), 4-(2,2,3,3-tetramethylcyclopropanecarboxamide)-benzenesulfonamide (TMCD-benzenesulfonamide), and 5-(TMCD)-1,3,4-thiadiazole-2-sulfonamide (TMCD-thiadiazolesulfonamide) were synthesized and shown to have more potent anticonvulsant activity than VPA. Teratogenic effects of these CNS-active compounds were evaluated in Naval Medical Research Institute (NMRI) mice susceptible to VPA-induced teratogenicity by comparing them to those of VPA. METHODS: Pregnant NMRI mice were given a single sc injection of either VPA or TMC-amide derivatives on gestation day 8.5, and then the live fetuses were examined to detect any external malformations on gestation day 18. After double-staining for bone and cartilage, their skeletons were examined. RESULTS: In contrast to VPA, which induced NTDs in a high number of fetuses at 2.4-4.8 mmol/kg, TMCD, TMCD-benzenesulfonamide, and TMCD-thiadiazolesulfonamide at 4.8 mmol/kg and MTMCD at 3.6 mmol/kg did not induce a significant number of NTDs. TMCD-thiadiazolesulfonamide exhibited a potential to induce limb defects in fetuses. Skeletal examination also revealed that fetuses exposed to all four of the tetramethylcyclopropanecarboxamide derivatives developed vertebral and rib abnormalities less frequently than those exposed to VPA. Our results established that TMCD, MTMCD, and TMCD-benzenesulfonamide are distinctly less teratogenic than VPA in NMRI mice. CONCLUSIONS: The CNS-active amides containing a tetramethylcyclopropanecarbonyl moiety demonstrated better anticonvulsant potency compared to VPA and a lack of teratogenicity, which makes these compounds good second-generation VPA antiepileptic drug candidates.


Asunto(s)
Anomalías Inducidas por Medicamentos , Anticonvulsivantes/efectos adversos , Epilepsia/tratamiento farmacológico , Ácido Valproico/análogos & derivados , Amidas/efectos adversos , Amidas/química , Animales , Anticonvulsivantes/química , Ciclopropanos/efectos adversos , Ciclopropanos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Masculino , Ratones , Ratones Endogámicos , Embarazo , Relación Estructura-Actividad , Sulfonamidas/efectos adversos , Sulfonamidas/química , Tiadiazoles/efectos adversos , Tiadiazoles/química , Ácido Valproico/efectos adversos , Bencenosulfonamidas
14.
Neuropharmacology ; 54(4): 699-707, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18201732

RESUMEN

Propylisopropylacetamide (PID) is a chiral CNS-active constitutional isomer of valpromide, the amide derivative of the major antiepileptic drug valproic acid (VPA). The purpose of this work was: a) To evaluate enantiospecific activity of PID on tactile allodynia in the Chung (spinal nerve ligation, SNL) model of neuropathic pain in rats; b) To evaluate possible sedation at effective antiallodynic doses, using the rotorod ataxia test; c) To investigate enantioselectivity in the pharmacokinetics of (R)- and (S)-PID in comparison to (R,S)-PID; and d) To determine electrophysiologically whether PID has the potential to affect tactile allodynia by suppressing ectopic afferent discharge in the peripheral nervous system (PNS). (R)-, (S)- and (R,S)-PID produced dose-related reversal of tactile allodynia with ED(50) values of 46, 48, 42 mg/kg, respectively. The individual PID enantiomers were not enantioselective in their antiallodynic activity. No sedative side-effects were observed at these doses. Following i.p. administration of the individual enantiomers, (S)-PID had lower clearance (CL) and volume of distribution (V) and a shorter half-life (t(1/2)) than (R)-PID. However following administration of (R,S)-PID, both enantiomers had similar CL and V, but (R)-PID had a longer t(1/2). Systemic administration of (R,S)-PID at antiallodynic doses did not suppress spontaneous ectopic afferent discharge generated in the injured peripheral nerve, suggesting that its antiallodynic action is exerted in the CNS rather than the PNS. Both of PID's enantiomers, and the racemate, are more potent antiallodynic agents than VPA and have similar potency to gabapentin. Consequently, they have the potential to become new drugs for treating neuropathic pain.


Asunto(s)
Alilisopropilacetamida/análogos & derivados , Analgésicos/farmacocinética , Evaluación de Medicamentos , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Alilisopropilacetamida/química , Alilisopropilacetamida/farmacocinética , Alilisopropilacetamida/uso terapéutico , Analgésicos/uso terapéutico , Animales , Anticonvulsivantes/uso terapéutico , Área Bajo la Curva , Desnervación Autonómica/métodos , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Masculino , Actividad Motora/efectos de los fármacos , Neuralgia/complicaciones , Neuralgia/tratamiento farmacológico , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA