Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 134(8): 2495-2515, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33934211

RESUMEN

KEY MESSAGE: Rose has 19 MLO genes. Of these, RhMLO1 and RhMLO2 were shown to be required for powdery mildew infection, which suggests their potential as susceptibility targets towards disease resistance. Powdery mildew, caused by Podosphaera pannosa, is one of the most serious and widespread fungal diseases for roses, especially in greenhouse-grown cut roses. It has been shown that certain MLO genes are involved in powdery mildew susceptibility and that loss of function in these genes in various crops leads to broad-spectrum, long-lasting resistance against this fungal disease. For this reason, these MLO genes are called susceptibility genes. We carried out a genome-wide identification of the MLO gene family in the Rosa chinensis genome, and screened for allelic variants among 22 accessions from seven different Rosa species using re-sequencing and transcriptome data. We identified 19 MLO genes in rose, of which four are candidate genes for functional homologs in clade V, which is the clade containing all dicot MLO susceptibility genes. We detected a total of 198 different allelic variants in the set of Rosa species and accessions, corresponding to 5-15 different alleles for each of the genes. Some diploid Rosa species shared alleles with tetraploid rose cultivars, consistent with the notion that diploid species have contributed to the formation of tetraploid roses. Among the four RhMLO genes in clade V, we demonstrated using expression study, virus-induced gene silencing as well as transient RNAi silencing that two of them, RhMLO1 and RhMLO2, are required for infection by P. pannosa and suggest their potential as susceptibility targets for powdery mildew resistance breeding in rose.


Asunto(s)
Ascomicetos/fisiología , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Rosa/genética , Alelos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Rosa/crecimiento & desarrollo , Rosa/microbiología
2.
Plant Mol Biol ; 99(4-5): 299-316, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30706286

RESUMEN

KEY MESSAGE: Transcriptomic analysis resulted in the upregulation of the genes related to common defense mechanisms for black spot and the downregulation of the genes related to photosynthesis and cell wall modification for powdery mildew. Plant pathogenic fungi successfully colonize their hosts by manipulating the host defense mechanisms, which is accompanied by major transcriptome changes in the host. To characterize compatible plant pathogen interactions at early stages of infection by the obligate biotrophic fungus Podosphaera pannosa, which causes powdery mildew, and the hemibiotrophic fungus Diplocarpon rosae, which causes black spot, we analyzed changes in the leaf transcriptome after the inoculation of detached rose leaves with each pathogen. In addition, we analyzed differences in the transcriptomic changes inflicted by both pathogens as a first step to characterize specific infection strategies. Transcriptomic changes were analyzed using next-generation sequencing based on the massive analysis of cDNA ends approach, which was validated using high-throughput qPCR. We identified a large number of differentially regulated genes. A common set of the differentially regulated genes comprised of pathogenesis-related (PR) genes, such as of PR10 homologs, chitinases and defense-related transcription factors, such as various WRKY genes, indicating a conserved but insufficient PTI [pathogen associated molecular pattern (PAMP) triggered immunity] reaction. Surprisingly, most of the differentially regulated genes were specific to the interactions with either P. pannosa or D. rosae. Specific regulation in response to D. rosae was detected for genes from the phenylpropanoid and flavonoid pathways and for individual PR genes, such as paralogs of PR1 and PR5, and other factors of the salicylic acid signaling pathway. Differently, inoculation with P. pannosa leads in addition to the general pathogen response to a downregulation of genes related to photosynthesis and cell wall modification.


Asunto(s)
Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Rosa/genética , Rosa/inmunología , Transcriptoma/genética , Transcriptoma/inmunología , Proteínas de Arabidopsis , Ascomicetos/patogenicidad , Quitinasas/genética , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Genes de Plantas/genética , Genes de Plantas/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Rosa/metabolismo , Ácido Salicílico , Transducción de Señal/genética , Transducción de Señal/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología
3.
Front Plant Sci ; 3: 244, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23130018

RESUMEN

Powdery mildew is a major disease of economic importance in cut and pot roses. As an alternative to conventional resistance breeding strategies utilizing single-dominant genes or QTLs, mildew resistance locus o (MLO)-based resistance might offer some advantages. In dicots such as Arabidopsis, pea, and tomato, loss-of-function mutations in MLO genes confer high levels of broad-spectrum resistance. Here, we report the isolation and characterization of four MLO homologs from a large rose EST collection isolated from leaves. These genes are phylogenetically closely related to other dicot MLO genes that are involved in plant powdery mildew interactions. Therefore, they are candidates for MLO genes involved in rose powdery mildew interactions. Two of the four isolated genes contain all of the sequence signatures considered to be diagnostic for MLO genes. We mapped all four genes to three linkage groups and conducted the first analysis of alternative alleles. This information is discussed in regards to a reverse genetics approach aimed at the selection of rose plants that are homozygous for loss-of-function in one or more MLO genes.

4.
BMC Genomics ; 13: 409, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22905676

RESUMEN

BACKGROUND: The resistance of plants to pathogens relies on two lines of defense: a basal defense response and a pathogen-specific system, in which resistance (R) genes induce defense reactions after detection of pathogen-associated molecular patterns (PAMPS). In the specific system, a so-called arms race has developed in which the emergence of new races of a pathogen leads to the diversification of plant resistance genes to counteract the pathogens' effect. The mechanism of resistance gene diversification has been elucidated well for short-lived annual species, but data are mostly lacking for long-lived perennial and clonally propagated plants, such as roses. We analyzed the rose black spot resistance gene, Rdr1, in five members of the Rosaceae: Rosa multiflora, Rosa rugosa, Fragaria vesca (strawberry), Malus x domestica (apple) and Prunus persica (peach), and we present the deduced possible mechanism of R-gene diversification. RESULTS: We sequenced a 340.4-kb region from R. rugosa orthologous to the Rdr1 locus in R. multiflora. Apart from some deletions and rearrangements, the two loci display a high degree of synteny. Additionally, less pronounced synteny is found with an orthologous locus in strawberry but is absent in peach and apple, where genes from the Rdr1 locus are distributed on two different chromosomes. An analysis of 20 TIR-NBS-LRR (TNL) genes obtained from R. rugosa and R. multiflora revealed illegitimate recombination, gene conversion, unequal crossing over, indels, point mutations and transposable elements as mechanisms of diversification.A phylogenetic analysis of 53 complete TNL genes from the five Rosaceae species revealed that with the exception of some genes from apple and peach, most of the genes occur in species-specific clusters, indicating that recent TNL gene diversification began prior to the split of Rosa from Fragaria in the Rosoideae and peach from apple in the Spiraeoideae and continued after the split in individual species. Sequence similarity of up to 99% is obtained between two R. multiflora TNL paralogs, indicating a very recent duplication. CONCLUSIONS: The mechanisms by which TNL genes from perennial Rosaceae diversify are mainly similar to those from annual plant species. However, most TNL genes appear to be of recent origin, likely due to recent duplications, supporting the hypothesis that TNL genes in woody perennials are generally younger than those from annuals. This recent origin might facilitate the development of new resistance specificities, compensating for longer generation times in woody perennials.


Asunto(s)
Evolución Molecular , Proteínas de Plantas/genética , Proteínas Represoras/genética , Rosa/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Análisis por Conglomerados , Mapeo Contig , Fragaria/genética , Fragaria/metabolismo , Genes de Plantas , Sitios Genéticos , Malus/genética , Malus/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Prunus/genética , Prunus/metabolismo , Proteínas Represoras/clasificación , Proteínas Represoras/metabolismo , Rosa/genética
5.
Front Plant Sci ; 2: 35, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22639591

RESUMEN

The interaction of roses with the leaf spot pathogen Diplocarpon rosae (the cause of black spot on roses) is an interesting pathosystem because it involves a long-lived woody perennial, with life history traits very different from most model plants, and a hemibiotrophic pathogen with moderate levels of gene flow. Here we present data on the molecular structure of the first monogenic dominant resistance gene from roses, Rdr1, directed against one isolate of D. rosae. Complete sequencing of the locus carrying the Rdr1 gene resulted in a sequence of 265,477 bp with a cluster of nine highly related TIR-NBS-LRR (TNL) candidate genes. After sequencing revealed candidate genes for Rdr1, we implemented a gene expression analysis and selected five genes out of the nine TNLs. We then silenced the whole TNL gene family using RNAi (Rdr1-RNAi) constructed from the most conserved sequence region and demonstrated a loss of resistance in the normally resistant genotype. To identify the functional TNL gene, we further screened the five TNL candidate genes with a transient leaf infiltration assay. The transient expression assay indicated a single TNL gene (muRdr1H), partially restoring resistance in the susceptible genotype. Rdr1 was found to localize within the muRdr1 gene family; the genes within this locus contain characteristic motifs of active TNL genes and belong to a young cluster of R genes. The transient leaf assay can be used to further analyze the rose black spot interaction and its evolution, extending the analyses to additional R genes and to additional pathogenic types of the pathogen.

6.
Theor Appl Genet ; 120(4): 765-73, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19911159

RESUMEN

We constructed a BAC contig of about 300 kb spanning the Rdr1 locus for black spot resistance in Rosa multiflora hybrids, using a new BIBAC library from DNA of this species. From this contig, we developed broadly applicable simple sequence repeat (SSR) markers tightly linked to Rdr1, which are suitable for genetic analyses and marker-assisted selection in roses. As a source for the high molecular weight DNA, we chose the homozygous resistant R. multiflora hybrid 88/124-46. For the assembly of the BAC contig, we made use of molecular markers derived from a previously established R. rugosa contig. In order to increase the resolution for fine mapping, the size of the population was increased to 974 plants. The genomic region spanning Rdr1 is now genetically restricted to 0.2 cM, corresponding to a physical distance of about 300 kb. One single-stranded conformational polymorphism (SSCP) and one SSR marker cosegregate with the Rdr1-mediated black spot resistance, while one SSR and several cleaved amplified polymorphic sequence or SSCP markers are very tightly linked with one to three recombinants among the 974 plants. The benefits of the molecular markers developed from the R. multiflora contig for the genetic analysis of roses and the integration of rose genetic maps are discussed.


Asunto(s)
Rosa/genética , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , ADN de Plantas/genética , Marcadores Genéticos , Polimorfismo Conformacional Retorcido-Simple , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA