Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229022

RESUMEN

Candida albicans is a ubiquitous fungus in the human gut microbiome as well as a prevalent cause of opportunistic mucosal and systemic disease. There is currently little understanding, however, as to how crosstalk between C. albicans and the host regulates colonization of this key niche. Here, we performed expression profiling on ileal and colonic tissues in germ-free mice colonized with C. albicans to define the global response to this fungus. We reveal that Duox2 and Duoxa2 , encoding dual NADPH oxidase activity, are upregulated in both the ileum and colon, and that induction requires the C. albicans yeast-hyphal transition and the hyphal-specific toxin candidalysin. Hosts lacking the IL-17 receptor failed to upregulate Duox2/Duoxa2 in response to C. albicans , while addition of IL-17A to colonoids induced these genes together with the concomitant production of hydrogen peroxide. To directly define the role of Duox2/Duoxa2 in fungal colonization, antibiotic-treated mice lacking intestinal DUOX2 activity were evaluated for C. albicans colonization and host responses. Surprisingly, loss of DUOX2 function reduced fungal colonization at extended time points (>17 days colonization) and increased the proportion of hyphal cells in the gut. IL-17A levels were also elevated in C. albicans -colonized mice lacking functional DUOX2 highlighting cross-regulation between this cytokine and DUOX2. Together, these experiments reveal novel links between fungal cells, candidalysin toxin and the host IL-17-DUOX2 axis, and that a complex interplay between these factors regulates C. albicans filamentation and colonization in the gut.

2.
Dig Dis Sci ; 69(4): 1156-1168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448762

RESUMEN

BACKGROUND/AIMS: We examined the involvement of cholecystokinin (CCK) in the exacerbation of indomethacin (IND)-induced gastric antral ulcers by gastroparesis caused by atropine or dopamine in mice. METHODS: Male mice were fed for 2 h (re-feeding) following a 22-h fast. Indomethacin (IND; 10 mg/kg, s.c.) was administered after re-feeding; gastric lesions were examined 24 h after IND treatment. In another experiment, mice were fed for 2 h after a 22-h fast, after which the stomachs were removed 1.5 h after the end of the feeding period. Antral lesions, the amount of gastric contents, and the gastric luminal bile acids concentration were measured with or without the administration of the pro- and antimotility drugs CCK-octapeptide (CCK-8), atropine, dopamine, SR57227 (5-HT3 receptor agonist), apomorphine, lorglumide (CCK1 receptor antagonist), ondansetron, and haloperidol alone and in combination. RESULTS: IND produced severe lesions only in the gastric antrum in re-fed mice. CCK-8, atropine, dopamine, SR57227 and apomorphine administered just after re-feeding increased bile reflux and worsened IND-induced antral lesions. These effects were significantly prevented by pretreatment with lorglumide. Although atropine and dopamine also increased the amount of gastric content, lorglumide had no effect on the delayed gastric emptying provoked by atropine and dopamine. Both ondansetron and haloperidol significantly inhibited the increase of bile reflux and the exacerbation of antral lesions induced by atropine and dopamine, respectively, but did not affect the effects of CCK-8. CONCLUSIONS: These results suggest that CCK-CCK1 receptor signal increases bile reflux during gastroparesis induced by atropine and dopamine, exacerbating IND-induced antral ulcers.


Asunto(s)
Reflujo Biliar , Gastroparesia , Úlcera Gástrica , Ratones , Masculino , Animales , Indometacina , Úlcera , Receptor de Colecistoquinina A , Sincalida/efectos adversos , Apomorfina/efectos adversos , Dopamina , Haloperidol/efectos adversos , Ondansetrón , Úlcera Gástrica/inducido químicamente , Colecistoquinina/efectos adversos , Receptores de Colecistoquinina , Atropina/efectos adversos
3.
Dig Dis Sci ; 68(10): 3886-3901, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37632663

RESUMEN

BACKGROUND/AIMS: We examined the contributions of gastric emptying and duodenogastric bile reflux in the formation of gastric antral ulcers induced by NSAIDs in mice. METHODS: We used the murine re-fed indomethacin (IND) experimental ulcer model. Outcome measures included the appearance of gastric lesions 24 h after IND treatment and the assessment of gastric contents and the concentration of bile acids 1.5 h after re-feeding. The effects of atropine, dopamine, SR57227 (5-HT3 receptor agonist), apomorphine, ondansetron, haloperidol, and dietary taurocholate and cholestyramine were also examined. RESULTS: IND (10 mg/kg, s.c.) induced severe lesions only in the gastric antrum in the re-fed model. The antral lesion index and the amount of food intake during the 2-h refeeding period were positively correlated. Atropine and dopamine delayed gastric emptying, increased bile reflux, and worsened IND-induced antral lesions. SR57227 and apomorphine worsened antral lesions with increased bile reflux. These effects were prevented by the anti-emetic drugs ondansetron and haloperidol, respectively. The anti-emetic drugs markedly decreased the severity of antral lesions and the increase of bile reflux induced by atropine or dopamine without affecting delayed gastric emptying. Antral lesions induced by IND were increased by dietary taurocholate but decreased by the addition of the bile acid sequestrant cholestyramine. CONCLUSIONS: These results suggest that gastroparesis induced by atropine or dopamine worsens NSAID-induced gastric antral ulcers by increasing duodenogastric bile reflux via activation of 5-HT3 and dopamine D2 receptors.


Asunto(s)
Antieméticos , Reflujo Biliar , Reflujo Duodenogástrico , Gastroparesia , Úlcera Gástrica , Ratones , Animales , Indometacina , Dopamina , Úlcera , Gastroparesia/inducido químicamente , Serotonina , Apomorfina/efectos adversos , Antieméticos/efectos adversos , Ondansetrón/farmacología , Resina de Colestiramina/efectos adversos , Haloperidol/efectos adversos , Úlcera Gástrica/inducido químicamente , Antiinflamatorios no Esteroideos/efectos adversos , Atropina/efectos adversos
5.
Cell Mol Gastroenterol Hepatol ; 16(4): 557-572, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369278

RESUMEN

BACKGROUND & AIMS: Metabolic syndrome (MetS) is characterized by obesity, glucose intolerance, and hepatic steatosis. Alterations in the gut microbiome play important roles in the development of MetS. However, the mechanisms by which this occurs are poorly understood. Dual oxidase 2 (DUOX2) is an antimicrobial reduced nicotinamide adenine dinucleotide phosphate oxidase expressed in the gut epithelium. Here, we posit that epithelial DUOX2 activity provides a mechanistic link between the gut microbiome and the development of MetS. METHODS: Mice carrying an intestinal epithelial-specific deletion of dual oxidase maturation factor 1/2 (DA IEC-KO), and wild-type littermates were fed a standard diet and killed at 24 weeks. Metabolic alterations were determined by glucose tolerance, lipid tests, and body and organ weight measurements. DUOX2 activity was determined by Amplex Red. Intestinal permeability was determined by fluorescein isothiocyanate-dextran, microbial translocation assessments, and portal vein lipopolysaccharide measurements. Metagenomic analysis of the stool microbiome was performed. The role of the microbiome was assessed in antibiotic-treated mice. RESULTS: DA IEC-KO males showed increased body and organ weights accompanied by glucose intolerance and increased plasma lipid and liver enzyme levels, and increased adiposity in the liver and adipose tissue. Expression of F4/80, CD68, uncoupling protein 1, carbohydrate response element binding protein, leptin, and adiponectin was altered in the liver and adipose tissue of DA IEC-KO males. DA IEC-KO males produced less epithelial H2O2, had altered relative abundance of Akkermansiaceae and Lachnospiraceae in stool, and showed increased portal vein lipopolysaccharides and intestinal permeability. Females were protected from barrier defects and MetS, despite producing less H2O2. Antibiotic depletion abrogated all MetS phenotypes observed. CONCLUSIONS: Intestinal epithelial inactivity of DUOX2 promotes MetS in a microbiome-dependent manner.


Asunto(s)
Microbioma Gastrointestinal , Intolerancia a la Glucosa , Síndrome Metabólico , Animales , Femenino , Masculino , Ratones , Antibacterianos , Oxidasas Duales , Peróxido de Hidrógeno , Lipopolisacáridos , Obesidad/metabolismo
8.
Sci Rep ; 12(1): 20935, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463312

RESUMEN

The lactoperoxidase (LPO)-hydrogen peroxide-halides reaction (LPO system) converts iodide and thiocyanate (SCN-) into hypoiodous acid (HOI) and hypothiocyanite (OSCN-), respectively. Since this system has been implicated in defense of the airways and oropharynx from microbial invasion, in this proof-of-concept study we measured the concentrations of these analytes in human saliva from a convenience clinical sample of 40 qualifying subjects before and after acute iodine administration via the iodinated contrast medium used in coronary angiography to test the hypothesis that an iodide load increases salivary iodide and HOI concentrations. Saliva was collected and salivary iodide, SCN-, HOI and OSCN- were measured using standard methodology. The large iodine load delivered by the angiographic dye, several 100-fold in excess of the U.S. Recommended Daily Allowance for iodine (150 µg/day), significantly increased salivary iodide and HOI levels compared with baseline levels, whereas there was no significant change in salivary SCN- and OSCN- levels. Iodine load and changes of salivary iodide and HOI levels were positively correlated, suggesting that higher iodide in the circulation increases iodide output and salivary HOI production. This first of its kind study suggests that a sufficient but safe iodide supplementation less than the Tolerable Upper Limit for iodine set by the U.S. Institute of Medicine (1,100 µg/day) may augment the generation of antimicrobial HOI by the salivary LPO system in concentrations sufficient to at least in theory protect the host against susceptible airborne microbial pathogens, including enveloped viruses such as coronaviruses and influenza viruses.


Asunto(s)
Antiinfecciosos , Yodo , Estados Unidos , Humanos , Yoduros , Antiinfecciosos/farmacología , Antibacterianos , Angiografía Coronaria
9.
Front Med (Lausanne) ; 9: 1033601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530869

RESUMEN

Background: Iodine and particularly its oxidated forms have long been recognized for its effective antiseptic properties. Limited in vitro and in vivo data suggest that iodine exposure may rapidly inactivate, reduce transmission, and reduce infectivity of SARS-CoV-2. We hypothesized that iodine exposure may be associated with decreased incident COVID-19 infection. Methods: A retrospective population-level cohort analysis was performed of the U.S. Veterans Health Administration between 1 March 2020 and 31 December 2020, before the widespread availability of vaccines against SARS-CoV-2. Multivariable logistic regression models estimated the adjusted odds ratios (OR) and 95% confidence intervals (CI) of the associations between iodinated contrast exposure and incident COVID-19 infection, adjusting for age, sex, race/ethnicity, place of residence, socioeconomic status, and insurance status. Results: 530,942 COVID-19 tests from 333,841 Veterans (mean ± SD age, 62.7 ± 15.2 years; 90.2% men; 61.9% non-Hispanic Whites) were analyzed, of whom 9% had received iodinated contrast ≤60 days of a COVID-19 test. Iodine exposure was associated with decreased incident COVID-19 test positivity (OR, 0.75 95% CI, 0.71-0.78). In stratified analyses, the associations between iodinated contrast use and decreased COVID-19 infection risk did not differ by age, sex, and race/ethnicity. Conclusion: Iodine exposure may be protective against incident COVID-19 infection. Weighed against the risks of supraphysiologic iodine intake, dietary, and supplemental iodine nutrition not to exceed its Tolerable Upper Limit may confer an antimicrobial benefit against SARS-CoV-2. A safe but antimicrobial level of iodine supplementation may be considered in susceptible individuals, particularly in geographic regions where effective COVID-19 vaccines are not yet readily available.

10.
Dig Dis Sci ; 67(10): 4620-4632, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908123

RESUMEN

Although imaging glucose metabolism with positron emission tomography combined with X-ray CT (FDG-PET/CT) has become a standard diagnostic modality for the discovery and surveillance of malignant tumors and inflammatory processes, its origins extend back to more than a century of notable discoveries in the fields of inorganic and organic chemistry, nuclear physics, mathematics, biochemistry, solute transport physiology, metabolism, and imaging, accomplished by pioneering and driven investigators, of whom at least ten were recipients of the Nobel Prize. These tangled and diverse roots eventually coalesced into the FDG-PET/CT method, that through its many favorable characteristics inherent in the isotope used (18F), the accurate imaging derived from coincidence detection of positron annihilation radiation combined with computed tomography, and the metabolic trapping of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) in tissues, provides safety, sensitivity, and specificity for tumor and inflammation detection. The authors hope that this article will increase the appreciation among its readers of the insight, creativity, persistence, and drive of the many investigators who made this technique possible. This article is followed by a review of the many applications of FDG-PET/CT to the gastrointestinal tract and hepatobiliary system (Mandelkern in Dig Dis Sci 2022).


Asunto(s)
Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Glucosa , Humanos , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tomografía Computarizada por Rayos X/métodos
11.
Dig Dis Sci ; 67(7): 2714-2715, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635628
12.
Neurogastroenterol Motil ; 34(10): e14378, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35388579

RESUMEN

BACKGROUND: Low-grade duodenal inflammation has recently been identified in patients with functional dyspepsia (FD). Chemosensory tuft cells were reported to be associated with gastrointestinal diseases. We therefore assessed duodenal tuft cell density and microinflammation in patients with FD to determine whether these measures could serve as useful biomarkers, and also correlated tuft cell density and microinflammation in FD patients. METHODS: Duodenal biopsy specimens were obtained from patients with FD and from controls. Tuft cells, eosinophils, and mast cells were immunochemically stained with specific antibodies. Tuft cells were identified by immunostaining for doublecortin-like kinase 1 (DCLK1); cholinergic tuft cells were assessed by double staining for choline acetyltransferase (ChAT) and DCLK1. Immune-type tuft cells were assessed by IL-25 mRNA expression using real-time PCR. KEY RESULTS: The density of intramucosal eosinophils and mast cells was significantly higher in the duodenum of FD patients than in controls. The density of tuft cells was significantly higher in the duodenum of FD patients compared with controls, and significantly correlated with eosinophil density in the duodenum of FD patients and controls. Moreover, a fraction of ChAT-positive cells was DCLK1 positive; all duodenal DCLK1+ tuft cells were ChAT-immunoreactive in FD and in control subjects. CONCLUSIONS AND INFERENCES: Cholinergic tuft cell density was higher in the duodenum of patients with FD and significantly correlated with eosinophil density. Further studies are needed to investigate the pathophysiological significance of tuft cells in FD and may provide valuable clues to the pathophysiology of FD.


Asunto(s)
Dispepsia , Biomarcadores/metabolismo , Recuento de Células , Colina O-Acetiltransferasa/metabolismo , Colinérgicos/metabolismo , Quinasas Similares a Doblecortina , Duodeno/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas , ARN Mensajero/metabolismo
13.
Eur J Pharmacol ; 906: 174292, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216575

RESUMEN

Short-chain fatty acids (SCFAs) produced by the microbial fermentation of carbohydrates are important energy substrates for mammals. Intestinal epithelia respond to these metabolites by stimulation of anion secretion via the release of epithelial acetylcholine. The present experiments were performed to discover which of the known receptors for SCFAs are expressed in rat caecum, the most important site of fermentation within the intestine of non-ruminant mammals. Using the increase in short-circuit current (Isc) induced by anion secretion as the readout, the order of efficiency of the tested SCFAs in rat caecum was propionate > butyrate > acetate. Both synthetic high-affinity selective free fatty acid (FFA) receptor agonists 4-CMTB (FFA2 receptor) and AR420626 (FFA3 receptor) partially mimicked the effect of propionate on Isc (IProp). IProp was concentration-dependently inhibited by the FFA3 receptor antagonist ß-OH-butyrate. Although no antagonist of rat FFA2 receptor is available, coadministration of the allosteric FFA2 receptor agonist 4-CMTB together with a low concentration of propionate potentiated IProp, suggesting that FFA2 receptor is involved in sensing of short-chain fatty acids as well. The expression of both receptor types was confirmed by qPCR (with FFA2 > FFA3 receptor). Immunohistochemical staining revealed the localization of FFA2 receptor in the surface epithelium and the FFA3 receptor expression predominantly in enteroendocrine cells and subepithelial nerve-like fibers. Taken together, the present results demonstrate that the anion secretion induced by the microbial metabolite propionate in rat caecum is enhanced by activation of FFA2 and FFA3 receptor expressed in different cell types within the caecal epithelium.


Asunto(s)
Acetilcolina/metabolismo , Ciego/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ciego/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Femenino , Mucosa Intestinal/efectos de los fármacos , Masculino , Modelos Animales , Ratas , Receptores Acoplados a Proteínas G/agonistas
16.
J Clin Invest ; 131(9)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651715

RESUMEN

A primordial gut-epithelial innate defense response is the release of hydrogen peroxide by dual NADPH oxidase (DUOX). In inflammatory bowel disease (IBD), a condition characterized by an imbalanced gut microbiota-immune homeostasis, DUOX2 isoenzyme is the highest induced gene. Performing multiomic analyses using 2872 human participants of a wellness program, we detected a substantial burden of rare protein-altering DUOX2 gene variants of unknown physiologic significance. We identified a significant association between these rare loss-of-function variants and increased plasma levels of interleukin-17C, which is induced also in mucosal biopsies of patients with IBD. DUOX2-deficient mice replicated increased IL-17C induction in the intestine, with outlier high Il17c expression linked to the mucosal expansion of specific Proteobacteria pathobionts. Integrated microbiota/host gene expression analyses in patients with IBD corroborated IL-17C as a marker for epithelial activation by gram-negative bacteria. Finally, the impact of DUOX2 variants on IL-17C induction provided a rationale for variant stratification in case control studies that substantiated DUOX2 as an IBD risk gene. Thus, our study identifies an association of deleterious DUOX2 variants with a preclinical hallmark of disturbed microbiota-immune homeostasis that appears to precede the manifestation of IBD.


Asunto(s)
Oxidasas Duales , Microbioma Gastrointestinal/inmunología , Variación Genética , Homeostasis , Enfermedades Inflamatorias del Intestino , Animales , Oxidasas Duales/genética , Oxidasas Duales/inmunología , Femenino , Células HEK293 , Homeostasis/genética , Homeostasis/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Interleucina-17/genética , Interleucina-17/inmunología , Masculino , Ratones , Ratones Noqueados
18.
Dig Dis Sci ; 66(3): 655-656, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33428041
20.
Curr Opin Gastroenterol ; 36(6): 501-508, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32925177

RESUMEN

PURPOSE OF REVIEW: The gut barrier serves as the primary interface between the environment and host in terms of surface area and complexity. Luminal chemosensing is a term used to describe how small molecules in the gut lumen interact with the host through surface receptors or via transport into the subepithelial space. In this review, we have summarized recent advances in the understanding of the luminal chemosensory system in the gastroduodenal epithelium consisting of enterocytes, enteroendocrine, and tuft cells, with particular emphasis on how chemosensing affects mucosal protective responses and the metabolic syndrome. RECENT FINDINGS: Recent single-cell RNA sequencing provides detailed cell type-specific expression of chemosensory receptors and other bioactive molecules as well as cell lineages; some are similar to lingual taste cells whereas some are gut specific. Gut luminal chemosensing is not only important for the local or remote regulation of gut function, but also contributes to the systemic regulation of metabolism, energy balance, and food intake. We will discuss the chemosensory mechanisms of the proximal intestine, in particular to gastric acid, with a focus on the cell types and receptors involved in chemosensing, with emphasis on the rare chemosensory cells termed tuft cells. We will also discuss the chemosensory functions of intestinal ectoenzymes and bacterial components (e.g., lipopolysaccharide) as well as how they affect mucosal function through altering the gut-hormonal-neural axis. SUMMARY: Recent updates in luminal chemosensing by different chemosensory cells have provided new possibilities for identifying novel molecular targets for the treatment of mucosal injury, metabolic disorders, and abnormal visceral sensation.


Asunto(s)
Enterocitos , Receptores Acoplados a Proteínas G , Duodeno , Células Enteroendocrinas , Humanos , Mucosa Intestinal , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA