Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phlebology ; 39(1): 20-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37846077

RESUMEN

INTRODUCTION: Although morphological and anatomical studies indicate that venous wall weakening and subendothelial fibrosis characterize varicose veins (VV), the pathogenesis of VV remains poorly understood. The aim of this study is to obtain protein expression profiles in patients with VV and thereby get a step closer to understanding the pathogenesis of VV. METHODS: Specimens were obtained from total of 10 patients, that is, from 5 patients undergoing VV surgical stripping and from 5 non-VV patients undergoing bypass surgery. Specimens were collected from the same layers of venous wall. Proteins were extracted from each specimen and analyzed by ion mobility spectrometry (IMS-MS). In total, 1387 were identified and 486 proteins were identified in all samples. From these, 15 proteins were differentially expressed between VV and non-VV samples (p < .05) and 12 of these showed a fold change >1.5. RESULTS: Interestingly, among the differentially expressed proteins, only two proteins were significantly increased in the VV tissue, that is, GAPDH (p = .028, fold change 2.74), where several proteins involved in maintaining the homeostasis in the extracellular matrix, that is, the CXXC zinc finger protein 5 (CXXC5) and nucleoporin (SEH1) were prominently downregulated (p = .049, fold change 37.8, and p = .040, fold change 3.46). The downregulation in protein expression of CXXC5 and SEH1 as well as upregulation of GAPDH were validated by Western blotting. CONCLUSION: The identified differentially expressed proteins suggest an altered profile of the connective tissue proteins as well as an increased proteolytic enzyme activity which both may be central in the pathophysiology of varicose veins.


Asunto(s)
Proteómica , Várices , Humanos , Vena Safena/patología , Várices/cirugía , Procedimientos Quirúrgicos Vasculares , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37762288

RESUMEN

A high temperature-adapted bacteriophage, vB_PtoS_NIIg3.2 (NIIg3.2), was isolated in Lithuania from compost heaps using Parageobacillus toebii strain NIIg-3 as a host for phage propagation. Furthermore, NIIg3.2 was active against four strains of Geobacillus thermodenitrificans, and it infected the host cells from 50 to 80 °C. Transmission electron microscopy analysis revealed siphovirus morphology characterized by an isometric head (~59 nm in diameter) and a noncontractile tail (~226 nm in length). The double-stranded DNA genome of NIIg3.2 (38,970 bp) contained 71 probable protein-encoding genes and no genes for tRNA. In total, 29 NIIg3.2 ORFs were given a putative functional annotation, including those coding for the proteins responsible for DNA packaging, virion structure/morphogenesis, phage-host interactions, lysis/lysogeny, replication/regulation, and nucleotide metabolism. Based on comparative phylogenetic and bioinformatic analysis, NIIg3.2 cannot be assigned to any genus currently recognized by ICTV and potentially represents a new one within siphoviruses. The results of this study not only extend our knowledge about poorly explored thermophilic bacteriophages but also provide new insights for further investigation and understanding the evolution of Bacilllus-group bacteria-infecting viruses.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Filogenia , Lisogenia , Técnicas de Tipificación Bacteriana , Muerte Celular
3.
mSystems ; 8(5): e0071823, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37706681

RESUMEN

IMPORTANCE: Non-canonical 5'-caps removing RNA hydrolase NudC, along with stress-responsive RNA helicase CsdA, is crucial for 5'-NAD-RNA decapping and bacterial movement.


Asunto(s)
Escherichia coli , NAD , Escherichia coli/genética , Hidrolasas , ARN Helicasas DEAD-box/genética , ARN
4.
Viruses ; 15(8)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37632033

RESUMEN

We report a detailed characterization of five thermophilic bacteriophages (phages) that were isolated from compost heaps in Vilnius, Lithuania using Geobacillus thermodenitrificans strains as the hosts for phage propagation. The efficiency of plating experiments revealed that phages formed plaques from 45 to 80 °C. Furthermore, most of the phages formed plaques surrounded by halo zones, indicating the presence of phage-encoded bacterial exopolysaccharide (EPS)-degrading depolymerases. Transmission Electron Microscopy (TEM) analysis revealed that all phages were siphoviruses characterized by an isometric head (from ~63 nm to ~67 nm in diameter) and a non-contractile flexible tail (from ~137 nm to ~150 nm in length). The genome sequencing resulted in genomes ranging from 38,161 to 39,016 bp. Comparative genomic and phylogenetic analysis revealed that all the isolated phages had no close relatives to date, and potentially represent three new genera within siphoviruses. The results of this study not only improve our knowledge about poorly explored thermophilic bacteriophages but also give new insights for further investigation of thermophilic and/or thermostable enzymes of bacterial viruses.


Asunto(s)
Bacteriófagos , Compostaje , Geobacillus , Filogenia , Técnicas de Tipificación Bacteriana , Bacteriófagos/genética , Geobacillus/genética
5.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768772

RESUMEN

The prevalence of infertility is getting higher over the years. The increasing age of first-time parents, although economically more desirable, can cause various biological problems from low natural conception rate to poor pregnancy outcomes. The growing demand for assisted reproductive technology procedures worldwide draws medical specialists' and scientists' attention to various elements which could lead to successful conception, such as follicular fluid (FF) and hormones. In this study, we analyzed the effects of exposure to follicle-stimulating hormone (FSH) on FF-derived stromal cells isolated from females admitted for treatment due to infertility, participating in assisted reproductive technologies procedures. We demonstrated that FF stromal cells are positive for mesenchymal stromal cell surface markers (CD90+, CD44+, CD166+) and showed that FSH has no impact on FF stromal cell morphology yet lowers proliferation rate. Using a real-time polymerase chain reaction method, we indicated that the expression of PTGS2 is significantly downregulated in FF sediment cells of patients who did not conceive; furthermore, we showed that FSH can affect the expression of ovarian follicle development and FSH response-related genes differentially depending on the length of exposure and that levels of ovulatory cascade genes differ in conceived and not-conceived patients' FF stromal cells. Using mass spectrometry analysis, we identified 97 proteins secreted by FF stromal cells. The identified proteins are related to stress response, positive regulation of apoptotic cell clearance and embryo implantation.


Asunto(s)
Hormona Folículo Estimulante , Infertilidad , Embarazo , Femenino , Humanos , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Líquido Folicular/metabolismo , Folículo Ovárico/metabolismo , Hormona Folículo Estimulante Humana , Infertilidad/metabolismo , Células del Estroma/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012768

RESUMEN

Lytic viruses of bacteria (bacteriophages, phages) are intracellular parasites that take over hosts' biosynthetic processes for their propagation. Most of the knowledge on the host hijacking mechanisms has come from the studies of the lytic phage T4, which infects Escherichia coli. The integrity of T4 development is achieved by strict control over the host and phage processes and by adjusting them to the changing infection conditions. In this study, using in vitro and in vivo biochemical methods, we detected the direct interaction between the T4 protein RIII and ribosomal protein S1 of the host. Protein RIII is known as a cytoplasmic antiholin, which plays a role in the lysis inhibition function of T4. However, our results show that RIII also acts as a viral effector protein mainly targeting S1 RNA-binding domains that are central for all the activities of this multifunctional protein. We confirm that the S1-RIII interaction prevents the S1-dependent activation of endoribonuclease RegB. In addition, we propose that by modulating the multiple processes mediated by S1, RIII could act as a regulator of all stages of T4 infection including the lysis inhibition state.


Asunto(s)
Bacteriófago T4 , Endorribonucleasas , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Virales/metabolismo
7.
Curr Issues Mol Biol ; 44(5): 1768-1787, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35678651

RESUMEN

The ER chaperone calreticulin (CALR) also has extracellular functions and can exit the mammalian cell in response to various factors, although the mechanism by which this takes place is unknown. The yeast Saccharomyces cerevisiae efficiently secretes human CALR, and the analysis of this process in yeast could help to clarify how it gets out of eukaryotic cells. We have achieved a secretion titer of about 140 mg/L CALR in our S. cerevisiae system. Here, we present a comparative quantitative whole proteome study in CALR-secreting yeast using non-equilibrium pH gradient electrophoresis (NEPHGE)-based two-dimensional gel electrophoresis (2DE) as well as liquid chromatography mass spectrometry in data-independent analysis mode (LC-MSE). A reconstructed carrier ampholyte (CA) composition of NEPHGE-based first-dimension separation for 2DE could be used instead of formerly commercially available gels. Using LC-MSE, we identified 1574 proteins, 20 of which exhibited differential expression. The largest group of differentially expressed proteins were structural ribosomal proteins involved in translation. Interestingly, we did not find any signs of cellular stress which is usually observed in recombinant protein-producing yeast, and we did not identify any secretory pathway proteins that exhibited changes in expression. Taken together, high-level secretion of human recombinant CALR protein in S. cerevisiae does not induce cellular stress and does not burden the cellular secretory machinery. There are only small changes in the cellular proteome of yeast secreting CALR at a high level.

8.
Front Genet ; 13: 821676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495123

RESUMEN

Acute myeloid leukemia (AML) is an aggressive, heterogeneous group of malignancies with different clinical behaviors and different responses to therapy. For many types of cancer, finding cancer early makes it easier to treat. Identifying prognostic molecular markers and understanding their biology are the first steps toward developing novel diagnostic tools or therapies for patients with AML. In this study, we defined proteins and genes that can be used in the prognosis of different acute leukemia cases and found possible uses in diagnostics and therapy. We analyzed newly diagnosed acute leukemia cases positive for t (15; 17) (q22; q21) PML-RAR alpha, acute promyelocytic leukemia (APL). The samples of bone marrow cells were collected from patients at the diagnosis stage, as follow-up samples during standard treatment with all-trans retinoic acid, idarubicin, and mitoxantrone, and at the molecular remission. We determined changes in the expression of genes involved in leukemia cell growth, apoptosis, and differentiation. We observed that WT1, CALR, CAV1, and MYC genes' expression in all APL patients with no relapse history was downregulated after treatment and could be potential markers associated with the pathology, thereby revealing the potential value of this approach for a better characterization of the prediction of APL outcomes.

9.
Cytotherapy ; 24(6): 597-607, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304075

RESUMEN

BACKGROUND AIMS: To facilitate artificial bone construct integration into a patient's body, scaffolds are enriched with different biologically active molecules. Among various scaffold decoration techniques, coating surfaces with cell-derived extracellular matrix (ECM) is a rapidly growing field of research. In this study, for the first time, this technology was applied using primary dental pulp stem cells (DPSCs) and tested for use in artificial bone tissue construction. METHODS: Rat DPSCs were grown on three-dimensional-printed porous polylactic acid scaffolds for 7 days. After the predetermined time, samples were decellularized, and the remaining ECM detailed proteomic analysis was performed. Further, DPSC-secreated ECM impact to mesenchymal stromal cells (MSC) behaviour as well as its role in osteoregeneration induction were analysed. RESULTS: It was identified that DPSC-specific ECM protein network ornamenting surface-enhanced MSC attachment, migration and proliferation and even promoted spontaneous stem cell osteogenesis. This protein network also demonstrated angiogenic properties and did not stimulate MSCs to secrete molecules associated with scaffold rejection. With regard to bone defects, DPSC-derived ECM recruited endogenous stem cells, initiating the bone self-healing process. Thus, the DPSC-secreted ECM network was able to significantly enhance artificial bone construct integration and induce successful tissue regeneration. CONCLUSIONS: DPSC-derived ECM can be a perfect tool for decoration of various biomaterials in the context of bone tissue engineering.


Asunto(s)
Proteómica , Andamios del Tejido , Animales , Regeneración Ósea , Diferenciación Celular , Pulpa Dental , Matriz Extracelular/metabolismo , Osteogénesis , Ratas , Células Madre/metabolismo
10.
Biochim Biophys Acta Proteins Proteom ; 1869(11): 140710, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34358706

RESUMEN

Calreticulin (CALR) is a highly conserved multifunctional chaperone protein primarily present in the endoplasmic reticulum, where it regulates Ca2+ homeostasis. Recently, CALR has gained special interest for its diverse functions outside the endoplasmic reticulum, including the cell surface and extracellular space. Although high-resolution structures of CALR exist, it has not yet been established how different regions and individual amino acid residues contribute to structural stability of the protein. In the present study, we have identified key residues determining the structural stability of CALR. We used a Saccharomyces cerevisiae expression system to express and purify 50 human CALR mutants, which were analysed for several parameters including secretion titer, melting temperature (Tm), stability and oligomeric state. Our results revealed the importance of a previously identified small patch of conserved surface residues, amino acids 166-187 ("cluster 2") for structural stability of the human CALR protein. Two residues, Tyr172 and Asp187, were critical for maintaining the native structure of the protein. Mutant D187A revealed a severe drop in secretion titer, it was thermally unstable, prone to degradation, and oligomer formation. Tyr172 was critical for thermal stability of CALR and interacted with the third free Cys163 residue. This illustrates an unusual thermal stability of CALR dominated by Asp187, Tyr172 and Cys163, which may interact as part of a conserved structural unit. Besides structural clusters, we found a correlation of some measured parameter values in groups of CALR mutants that cause myeloproliferative neoplasms (MPN) and in mutants that may be associated with sudden unexpected death (SUD).


Asunto(s)
Sustitución de Aminoácidos , Calreticulina/química , Simulación de Dinámica Molecular , Calreticulina/genética , Humanos , Dominios Proteicos , Estabilidad Proteica
11.
J Oral Maxillofac Res ; 12(2): e2, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377379

RESUMEN

OBJECTIVES: Millions of people worldwide are affected by diseases or injuries which lead to bone/tooth loss and defects. While such clinical situations are daily practice in most of the hospitals, the widely used treatment methods still have disadvantages. Therefore, this field of medicine is actively searching new tissue regeneration techniques, one of which could be stem cell secretome. Thus, the purpose of this research study was to perform the detail proteomic analysis of periosteum-derived mesenchymal stem cells secretome in order to evaluate if it is capable to induce osteo-regenerative process. MATERIAL AND METHODS: Periosteum-derived mesenchymal stem cells (PMSCs) were extracted from adult male New Zealand White rabbits. Cells were characterised by evaluating their differentiation potential. After characterisation PMSCs secretomes were collected and their proteomic analysis was performed. RESULTS: PMSCs were extracted from adult male New Zealand White rabbits. In order to characterise the extracted PMSCs, they were differentiated in the directions which mainly describes MSC multipotency - osteogenic, myogenic and adipogenic. A total of 146 proteins were detected. After characterisation PMSCs secretomes were collected and their proteomic analysis was performed. The resulting protein composition indicates the ability to promote bone regeneration to fully mature bone. CONCLUSIONS: Bioactive molecules detected in periosteum-derived mesenchymal stem cells secretome initiates the processes required for the formation of a fully functional bone.

12.
ACS Appl Mater Interfaces ; 13(33): 39076-39087, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34378375

RESUMEN

Fluorophores with multifunctional properties known as rare-earth-doped nanoparticles (RENPs) are promising candidates for bioimaging, therapy, and drug delivery. When applied in vivo, these nanoparticles (NPs) have to retain long blood-circulation time, bypass elimination by phagocytic cells, and successfully arrive at the target area. Usually, NPs in a biological medium are exposed to proteins, which form the so-called "protein corona" (PC) around the NPs and influence their targeted delivery and accumulation in cells and tissues. Different surface coatings change the PC size and composition, subsequently deciding the fate of the NPs. Thus, detailed studies on the PC are of utmost importance to determine the most suitable NP surface modification for biomedical use. When it comes to RENPs, these studies are particularly scarce. Here, we investigate the PC composition and its impact on the cellular uptake of citrate-, SiO2-, and phospholipid micelle-coated RENPs (LiYF4:Yb3+,Tm3+). We observed that the PC of citrate- and phospholipid-coated RENPs is relatively stable and similar in the adsorbed protein composition, while the PC of SiO2-coated RENPs is larger and highly dynamic. Moreover, biocompatibility, accumulation, and cytotoxicity of various RENPs in cancer cells have been evaluated. On the basis of the cellular imaging, supported by the inhibition studies, it was revealed that RENPs are internalized by endocytosis and that specific endocytic routes are PC composition dependent. Overall, these results are essential to fill the gaps in the fundamental understanding of the nano-biointeractions of RENPs, pertinent for their envisioned application in biomedicine.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Colorantes Fluorescentes/química , Compuestos de Litio/química , Nanopartículas del Metal/química , Corona de Proteínas/metabolismo , Dióxido de Silicio/química , Itrio/química , Adsorción , Neoplasias de la Mama , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Ácido Cítrico/química , Materiales Biocompatibles Revestidos/metabolismo , Endocitosis , Colorantes Fluorescentes/metabolismo , Humanos , Tamaño de la Partícula , Fosfolípidos/química , Propiedades de Superficie
13.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202508

RESUMEN

When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues-the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells. In addition, menstrual blood stem cells are extracted in a non-invasive and painless manner. In our study, we analyzed the characteristics and the potential for decidualization of menstrual blood stem cells isolated from healthy volunteers and women diagnosed with infertility. We demonstrated that MenSCs express CD44, CD166, CD16, CD15, BMSC, CD56, CD13 and HLA-ABC surface markers, have proliferative properties, and after induction of menstrual stem cell differentiation into epithelial direction, expression of genes related to decidualization (PRL, ESR, IGFBP and FOXO1) and angiogenesis (HIF1, VEGFR2 and VEGFR3) increased. Additionally, the p53, p21, H3K27me3 and HyperAcH4 proteins' expression increased during MenSCs decidualization, they secrete proteins that are involved in the regulation of the actin cytoskeleton, estrogen and relaxin signaling pathways and the management of inflammatory processes. Our findings reveal the potential use of MenSCs for the treatment of reproductive disorders.


Asunto(s)
Endometrio/citología , Infertilidad Femenina/terapia , Menstruación , Trasplante de Células Madre , Células Madre/citología , Células Madre/metabolismo , Biomarcadores , Diferenciación Celular , Proliferación Celular , Separación Celular/métodos , Células Cultivadas , Decidua/citología , Decidua/metabolismo , Femenino , Humanos , Inmunofenotipificación , Infertilidad Femenina/etiología , Proteoma , Proteómica/métodos
14.
Materials (Basel) ; 14(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202509

RESUMEN

The mesenchymal stem cell (MSC) secretome has been considered an innovative therapeutic biological approach, able to modulate cellular crosstalk and functionality for enhanced tissue repair and regeneration. This study aims to evaluate the functionality of the secretome isolated from periosteum-derived MSCs, from either basal or osteogenic-induced conditions, in the healing of a critical size calvarial bone defect in the rabbit model. A bioceramic xenograft was used as the vehicle for secretome delivery, and the biological response to the established biocomposite system was assessed by clinical, histological, histomorphometric, and microtomographic analysis. A comparative analysis revealed that the osteogenic-induced secretome presented an increased diversity of proteins, with emphasis on those related to osteogenesis. Microtomographic and histological morphometric analysis revealed that bioceramic xenografts implanted with secretomes enhanced the new bone formation process, with the osteogenic-induced secretome inducing the highest bone tissue formation. The application of the MSC secretome, particularly from osteogenic-induced populations, may be regarded as an effective therapeutic approach to enhance bone tissue healing and regeneration.

15.
Life (Basel) ; 11(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207784

RESUMEN

Survival rates from pancreatic cancer have remained stagnant for decades due to the heterogenic nature of the disease. This study aimed to find a new advanced biomarker and evaluate its clinical capabilities, thus enabling more individualised pancreatic cancer management. Between 2013 and 2020, 267 patients were included in the study. Surgically collected pancreatic tissue samples were analysed via high-definition mass spectrometry. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) was discovered as a possible promising pancreatic cancer biomarker. The predominance of CEACAM6 to pancreatic cancer was validated using antibodies in tissue samples. CEACAM6, carbohydrate antigen 19-9 (CA19-9), and carcinoembryonic antigen (CEA) blood serum concentrations were evaluated for clinical evaluation and comparison. Kaplan-Meier survival analyses were used to evaluate disease-free survival (DFS) and overall survival (OS). Poorer overall survival was significantly dependent on increased CEACAM6 blood serum concentrations (17.0 vs. 12.6 months, p = 0.017) in pancreatic cancer patients after radical treatment and adjuvant chemotherapy. Increased CEA and CA19-9 concentrations showed no significant dependencies with survival. Thus, CEACAM6 is a promising new biomarker with significant prognostic value and prediction of chemoresistance properties, enabling the improvement of individualised approaches to patients with pancreatic cancer.

16.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298953

RESUMEN

A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.


Asunto(s)
ADN Viral , Genoma Viral , Guanosina , Sistemas de Lectura Abierta , Pantoea/virología , Siphoviridae , Proteínas Virales , ADN Viral/genética , ADN Viral/metabolismo , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33999101

RESUMEN

Rab40b is a SOCS box-containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b-Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b-Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b-Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.


Asunto(s)
Citoesqueleto de Actina/genética , Actinas/genética , Proteínas del Citoesqueleto/genética , Movimiento Celular/genética , Matriz Extracelular/genética , Adhesiones Focales/genética , Humanos , Fibras de Estrés/genética
18.
Microorganisms ; 9(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807116

RESUMEN

A cold-adapted siphovirus, vB_PagS_AAS23 (AAS23) was isolated in Lithuania using the Pantoea agglomerans strain AUR for the phage propagation. The double-stranded DNA genome of AAS23 (51,170 bp) contains 92 probable protein encoding genes, and no genes for tRNA. A comparative sequence analysis revealed that 25 of all AAS23 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. Based on the phylogenetic analysis, AAS23 has no close relationship to other viruses publicly available to date and represents a single species of the genus Sauletekiovirus within the family Drexlerviridae. The phage is able to form plaques in bacterial lawns even at 4 °C and demonstrates a depolymerase activity. Thus, the data presented in this study not only provides the information on Pantoea-infecting bacteriophages, but also offers novel insights into the diversity of cold-adapted viruses and their potential to be used as biocontrol agents.

19.
Viruses ; 13(3)2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673419

RESUMEN

Achromobacter spp. are ubiquitous in nature and are increasingly being recognized as emerging nosocomial pathogens. Nevertheless, to date, only 30 complete genome sequences of Achromobacter phages are available in GenBank, and nearly all of those phages were isolated on Achromobacter xylosoxidans. Here, we report the isolation and characterization of bacteriophage vB_AchrS_AchV4. To the best of our knowledge, vB_AchrS_AchV4 is the first virus isolated from Achromobacter spanius. Both vB_AchrS_AchV4 and its host, Achromobacter spanius RL_4, were isolated in Lithuania. VB_AchrS_AchV4 is a siphovirus, since it has an isometric head (64 ± 3.2 nm in diameter) and a non-contractile flexible tail (232 ± 5.4). The genome of vB_AchrS_AchV4 is a linear dsDNA molecule of 59,489 bp with a G+C content of 62.8%. It contains no tRNA genes, yet it includes 82 protein-coding genes, of which 27 have no homologues in phages. Using bioinformatics approaches, 36 vB_AchrS_AchV4 genes were given a putative function. A further four were annotated based on the results of LC-MS/MS. Comparative analyses revealed that vB_AchrS_AchV4 is a singleton siphovirus with no close relatives among known tailed phages. In summary, this work not only describes a novel and unique phage, but also advances our knowledge of genetic diversity and evolution of Achromobacter bacteriophages.


Asunto(s)
Achromobacter/genética , Bacteriófagos/genética , Composición de Base/genética , Biología Computacional/métodos , ADN/genética , Virus ADN/genética , ADN Viral/genética , Genoma Viral/genética , Filogenia , ARN de Transferencia/genética , Análisis de Secuencia de ADN/métodos
20.
Viruses ; 12(4)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340233

RESUMEN

A novel cold-adapted siphovirus, vB_PagS_AAS21 (AAS21), was isolated in Lithuania using Pantoea agglomerans as the host for phage propagation. AAS21 has an isometric head (~85 nm in diameter) and a non-contractile flexible tail (~174 × 10 nm). With a genome size of 116,649 bp, bacteriophage AAS21 is the largest Pantoea-infecting siphovirus sequenced to date. The genome of AAS21 has a G+C content of 39.0% and contains 213 putative protein-encoding genes and 29 genes for tRNAs. A comparative sequence analysis revealed that 89 AAS21 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 63 AAS21 ORFs were functionally annotated, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. Proteomic analysis led to the experimental identification of 19 virion proteins, including 11 that were predicted by bioinformatics approaches. Based on comparative phylogenetic analysis, AAS21 cannot be assigned to any genus currently recognized by ICTV and may represents a new branch of viruses within the family Siphoviridae.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/fisiología , Pantoea/virología , Adaptación Biológica , Bacteriófagos/ultraestructura , Frío , Genoma Viral , Genómica/métodos , Sistemas de Lectura Abierta , Filogenia , Siphoviridae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...