Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
J Biomater Sci Polym Ed ; : 1-22, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137303

RESUMEN

Calotropis gigantea essential oil is utilized in outmoded medicine, therapeutics, and the cosmetic industries. However, the extreme volatility, oxidation susceptibility, and instability of this oil restricts its application. Thus, encapsulation is a more effective method of shielding this oil from unfavorable circumstances. The creation of oil/water (O/W) nanoemulsions based on Calotropis gigantea essential oil (CEO), known as CNE (Calotropis gigantea essential oil nanoemulsions), and an assessment of its biological potential were the goals of this work. UV, fluorescence, and FT-IR methods were used for physiological characterization. Biological activities, including anti-inflammatory, anti-diabetic, and anti-cancer effects. Studies on the pharmacokinetics of CNE were conducted. CNEs encapsulation efficiency was found to be 92%. The CNE nanoemulsions had a spherical shape with polydispersity index of 0.531, size of 200 nm, and a zeta potential of -35.9 mV. Even after being stored at various temperatures for 50 days, CNE nanoemulsions remained stable. Numerous tests were used to determine the antioxidant capacity of CNE, and the following IC50 values (µl/mL) were found: iron chelating assay: 18, hydroxyl radical scavenging: 37, and nitric oxide radical scavenging activity: 58. The percentage of HeLa cells that remained viable after being treated with CNE was 41% at a higher dose of 1 µl. CNE inhibited α-amylase in a dose-dependent manner, with 72% inhibition at its higher dose of 250 µL. Research on the kinetics of drugs showed that nanoemulsions showed Higuchi pattern. This research showed potential use of Calotropis gigantea oil-based nanoemulsions in the food, cosmetic, and pharmaceutical industries.

2.
J Neurochem ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073120

RESUMEN

Extremely preterm infants are at risk of developing retinopathy of prematurity (ROP), characterized by neovascularization and neuroinflammation leading to blindness. Polyunsaturated fatty acid (PUFA) supplementation is recommended in preterm infants to lower the risk of ROP, however, with no significant improvement in visual acuity. Reasonably, this could be as a result of the non-consideration of PUFA metabolizing enzymes. We hypothesize that abnormal metabolism of the arachidonic acid (AA) pathway may contribute to severe stages of ROP. The present study investigated the AA-metabolizing enzymes in ROP pathogenesis by a targeted gene expression analysis of blood (severe ROP = 70, No/Mild = 56), placenta (preterm placenta = 6, full term placenta = 3), and human primary retinal cell cultures and further confirmed at the protein level by performing IHC in sections of ROP retina. The lipid metabolites were identified by LC-MS in the vitreous humor (VH; severe ROP = 15, control = 15). Prostaglandins D2 (p = 0.02), leukotrienes B5 (p = 0.0001), 11,12-epoxyeicosatrienoic acid (p = 0.01), and lipid-metabolizing enzymes of the AA pathway such as CYP1B1, CYP2C8, COX2, and ALOX15 were significantly upregulated while EPHX2 was significantly (0.04) downregulated in ROP cases. Genes involved in hypoxic stress, angiogenesis, and apoptosis showed increased expression in ROP. An increase in the metabolic intermediates generated from the AA metabolism pathway further confirmed the role of these enzymes in ROP, while metabolites for EPHX2 activity were low in abundance. Inflammatory lipid intermediates were higher compared to anti-inflammatory lipids in VH and showed an association with enzyme activity. Both the placenta of preterm infants who developed ROP and hypoxic retinal cultures showed a reduced expression of EPHX2. These findings suggested a strong involvement of EPHX2 in regulating retinal neovascularization and inflammation. The study results underscore the role of arachidonic acid metabolism in the development of ROP and as a potential target for preventing vision loss among preterm-born infants.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38924147

RESUMEN

In spite of 150 years of studying malaria, the unique features of the malarial parasite, Plasmodium, still perplex researchers. One of the methods by which the parasite manages its gene expression is epigenetic regulation, the champion of which is PfGCN5, an essential enzyme responsible for acetylating histone proteins. PfGCN5 is a ∼170 kDa chromatin-remodeling enzyme that harbors the conserved bromodomain and acetyltransferase domain situated in its C-terminus domain. Although the PfGCN5 proteolytic processing is essential for its activity, the specific protease involved in this process still remains elusive. Identification of PfGCN5 interacting proteins through immunoprecipitation (IP) followed by LC-tandem mass spectrometry analysis revealed the presence of food vacuolar proteins, such as the cysteine protease Falcipain 3 (FP3), in addition to the typical members of the PfGCN5 complex. The direct interaction between FP3 and PfGCN5 was further validated by in vitro pull-down assay as well as IP assay. Subsequently, use of cysteine protease inhibitor E64d led to the inhibition of protease-specific processing of PfGCN5 with concomitant enrichment and co-localization of PfGCN5 and FP3 around the food vacuole as evidenced by confocal microscopy as well as electron microscopy. Remarkably, the proteolytic cleavage of the nuclear protein PfGCN5 by food vacuolar protease FP3 is exceptional and atypical in eukaryotic organisms. Targeting the proteolytic processing of GCN5 and the associated protease FP3 could provide a novel approach for drug development aimed at addressing the growing resistance of parasites to current antimalarial drugs.

4.
Indian J Ophthalmol ; 72(6): 796-808, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38804800

RESUMEN

The response of retinal pathology to interventions in diabetic retinopathy (DR) is often independent of the glycated hemoglobin (HbA1c) values at the point of care. This is despite glucose control being one of the strongest risk factors for the development and progression of DR. Previous preclinical and clinical research has indicated metabolic memory, whereby past cumulative glucose exposure may continue to impact DR for a prolonged period. Preclinical studies have evaluated punitive metabolic memory through poor initial control of DM, whereas clinical studies have evaluated protective metabolic memory through good initial control of DM. In this narrative review, we evaluate the preclinical and clinical evidence regarding metabolic memory and discuss how this may form the basis of preventive care for DR by inducing "metabolic amnesia" in people with a history of uncontrolled diabetes in the past. While our review suggested mitochondrial biology may be one such target, research is still far from a possible clinical trial. We discuss the challenges in such research.


Asunto(s)
Glucemia , Retinopatía Diabética , Humanos , Retinopatía Diabética/metabolismo , Glucemia/metabolismo , Factores de Riesgo , Hemoglobina Glucada/metabolismo , Progresión de la Enfermedad
5.
Semin Ophthalmol ; 39(6): 440-450, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38643349

RESUMEN

BACKGROUND: Diabetic eye disease is a highly prevalent and sight-threatening disorder. It is a disease of neuro-vascular unit of the retina, if left untreated can cause blindness. Therapeutic approaches followed for its treatment can only restrict the progression of the disease with highly variable results. There is no known biomarker for an early diagonsis of this disease, therefore by the time it is detected it goes beyond repair. This creates a massive demand for development of such biomarkers that help detect disease in its earlier stages. METHODS: PUBMED (https://pubmed.ncbi.nlm.nih.gov/) was searched for articles relevant to the topic published till November 2023. The search was made using keywords such as Diabetic Retinopathy, inflammation, tear, biomarker, proteomics etc. The studies providing relevant information to prove the importance of biomarker discovery were chosen. After compiling the data, the manuscript writing was planned under relevant headings and sub-headings. RESULTS: The review provides a comprehensive overview of all the tear protein biomarker studies in the field of DR and DME. Briefly, their potential in other diseases is also elucidated. While there are many studies pertaining to DR biomarkers, the identified markers lack validations which has restricted their usage in clinics. In case of DME, there was no such study towards biomarker discovery for its diagnosis and prognosis. CONCLUSIONS: The review highlights major studies and their lacunae in the field of biomarkers discovery for DR and DME.


Asunto(s)
Biomarcadores , Retinopatía Diabética , Diagnóstico Precoz , Proteínas del Ojo , Edema Macular , Lágrimas , Humanos , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/metabolismo , Biomarcadores/metabolismo , Pronóstico , Proteínas del Ojo/metabolismo , Edema Macular/diagnóstico , Edema Macular/metabolismo , Lágrimas/metabolismo
6.
Indian J Ophthalmol ; 72(7): 962-967, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38454856

RESUMEN

PURPOSE: Human ocular tissue banking plays an important part in the advancement of translational research for identifying the molecular processes involved in disease etiology and pathogenesis. Timely obtaining a good-quality ocular tissue from a cadaveric donor is exceedingly difficult, especially in remote areas, with a variable transportation time (within 12-24 h), raising concerns about RNA quality and its subsequent applications. Therefore, we assessed the utility of retinal tissues from cadaver donor and enucleated eyes based on the RNA quality and gene expression by real-time polymerase chain reaction (PCR). SETTINGS AND DESIGN: Prospective study. METHODS: Retina tissues were separated from the donor/enucleated eyes received in the eye bank within 24 h of death (n = 15) and within an hour from OR (n = 3), respectively, and stored immediately at -80 degree. RNA was isolated using trizol, and the quantity and quality were assessed using Qubit and agarose gel electrophoresis, respectively. QPCR was performed for measuring the expression of different retinal-specific genes. The cellular viability of the retina was assessed by establishing explant primary cell cultures. STATISTICAL ANALYSIS: The data were calculated as an average of normalised Ct values ± standard error of the mean. RESULTS: RNA obtained from cadaveric tissues despite being partially degraded showed a uniform strong gene expression of several retinal-specific genes such as PAX6, RHO, TUBB3, CRX , and ALDH1L1 . The primary cultures established from cadaveric tissues showed viable cells. CONCLUSION: The cadaver donor tissues collected within 24 hours of death can be effectively utilized for gene expression profiling.


Asunto(s)
Cadáver , Bancos de Ojos , Reacción en Cadena en Tiempo Real de la Polimerasa , Donantes de Tejidos , Humanos , Estudios Prospectivos , India/epidemiología , Retina/metabolismo , Biología Molecular/métodos , ARN/genética , Investigación Biomédica
8.
EClinicalMedicine ; 67: 102264, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38314056

RESUMEN

Maternal outcomes throughout pregnancy, childbirth, and the postnatal period are influenced by interlinked and interdependent vulnerabilities. A comprehensive understanding of how various threats and barriers affect maternal and perinatal health is critical to plan, evaluate and improve maternal health programmes. This paper builds on the introductory paper of the Series on the determinants of maternal health by assessing vulnerabilities during pregnancy, childbirth, and the postnatal period. We synthesise and present the concept of vulnerability in pregnancy and childbirth, and map vulnerability attributes and their dynamic influence on maternal outcomes in early and late pregnancy and during childbirth and the postnatal period, with a particular focus on low-income and middle-income countries (LMICs). We summarise existing literature and present the evidence on the effects of various reparative strategies to improve pregnancy and childbirth outcomes. Lastly, we discuss the implications of the identified vulnerability attributes and reparative strategies for the efforts of policymakers, healthcare professionals, and researchers working towards improving outcomes for women and birthing people in LMICs.

9.
Int J Pharm ; 651: 123768, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176477

RESUMEN

Chronic inflammation is a leading cause of neurodegeneration and vision loss in hyperglycemia-associated conditions such as diabetic retinopathy. Corticosteroid injections are widely used for treatment but suffer from limitations such as rapid drug clearance, short drug half-lives and frequent administration. While drug release from biomaterial carriers can overcome these shortcomings, evaluating the combined effects of corticosteroids and polymeric matrices under hyperglycemic stress is an important step towards aiding translation. In this study, we investigated the effects of dexamethasone (DEX) and electrospun mesh combination on primary human mixed retinal cells under normal and hyperglycemic culture conditions. DEX-incorporated poly(lactide-co-glycolide) (PLGA) meshes were prepared and characterized for architecture, chemistry, drug distribution and in vitro release. The meshes exhibited cumulative in vitro drug release of 39.5 % over 2 months at a near constant rate. Under normal culture conditions, DEX-PLGA meshes promoted significantly higher viability of mixed retinal cells than the control groups but without adverse phenotypic activation. Under hyperglycemic conditions, DEX supplementation resulted in higher viability than the control, although the highest viability was achieved only when DEX was added to cells cultured on PLGA fibers. The combination of DEX and PLGA fibers also promoted higher mRNA expression of the antioxidant GSH under hyperglycemia. Importantly, the largest reduction in the production of pro-inflammatory cytokines viz., MMP-9, IL-6, IL-8 and VEGF-R1 was observed for the DEX and PLGA combination. Our study reveals a combined effect of DEX and electrospun fibers in combating hyperglycemia-driven pro-inflammatory responses, which can aid the development of DEX-loaded electrospun implants for diabetes-driven retinal conditions.


Asunto(s)
Hiperglucemia , Mallas Quirúrgicas , Humanos , Materiales Biocompatibles , Polímeros , Dexametasona , Hiperglucemia/tratamiento farmacológico
10.
BioTechnologia (Pozn) ; 104(3): 233-245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37850116

RESUMEN

Essential oil (EO) from Eucalyptus polybrachtea is used as complementary and traditional medicine worldwide. The present study aimed at compositional profiling of EO and molecular docking of EO's bioactive compound 1,8 cineole against fungal enzymes involved in the riboflavin synthesis pathway, namely riboflavin synthase (RS), riboflavin biosynthesis protein RibD domain-containing protein (RibD), and 3,4-dihydroxy-2-butanone 4-phosphate synthase (DBPS) as apposite sites for drug designing against aspergillosis and mucormycosis, and in vitro confirmation. The compositional profile of EO was completed by GC-FID analysis. For molecular docking, the Patchdock tool was used. The ligand-enzyme 3-D interactions were examined, and ADMET properties (absorption, distribution, metabolism, excretion, and toxicity) were calculated. GC-FID discovered the occurrence of 1,8 cineole as a major component in EO, which was subsequently used for docking analysis. The docking analysis revealed that 1,8 cineole actively bound to RS, RibD, and DBPS fungal enzymes. The results of the docking studies demonstrated that the ligand 1,8 cineole exhibited H-bond and hydrophobic interactions with RS, RibD, and DBPS fungal enzymes. 1,8 cineole obeyed Lpinsky's rule and exhibited adequate bioactivity. Wet-lab authentication was achieved by using three fungal strains: Aspergillus niger, Aspergillus oryzae, and Mucor sp. Wet lab results indicated that EO was able to inhibit fungal growth.

11.
Midwifery ; 126: 103833, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37801839

RESUMEN

BACKGROUND: Episiotomies are still a routine procedure during childbirth in India, reflecting the misconceptions and lack of knowledge in the traditional training programs. There is a marked variation in the use of episiotomy between doctors and midwives. This study was conducted to ascertain and gain insight into this inequality in practice. METHODS: Retrospective data of spontaneous vaginal births across all units of a tertiary care center in South India from 2014 to 2021 was retrieved from medical records. First the total number of episiotomies, who performed them and indications were analysed. In the second part of the study, a questionnaire was distributed among doctors and midwives to delve into their knowledge and attitudes towards using episiotomy. FINDINGS: Of the 35253 spontaneous vaginal births over seven years, 28 % had an episiotomy. Midwives performed 22 % of them and obstetricians did the remaining. The most common indication was presumed fetal compromise. There was a reduction in episiotomy rates from 21 % to 5 % in midwifery practice and 45 % to 35 % for doctors over the study period. The second part of the study revealed a significant difference in the attitudes of doctors and midwives. Doctors leaned in favor of episiotomies despite the contrary evidence. CONCLUSION: Successful institution of any change in behavior needs an understanding of the perception and attitude towards the change. A focus on respectful maternity care, hospital policies based on scientific evidence and an enabling environment for training and education can avoid unnecessary birth practices not recommended for healthy pregnant women.


Asunto(s)
Servicios de Salud Materna , Partería , Femenino , Embarazo , Humanos , Episiotomía , Estudios Retrospectivos , Actitud del Personal de Salud , Partería/métodos , Práctica Clínica Basada en la Evidencia
12.
J Biomater Sci Polym Ed ; 34(17): 2438-2461, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37640030

RESUMEN

Essential oil from Melaleuca alternifolia (also known as Tea tree essential oil, TTO) is used as traditional medicine and used as therapeutic in medicine, food and cosmetic sectors. However, this oil is highly unstable, volatile and prone to oxidation which limits its practical use. The objective of this study was synthesis of tea tree oil based O/W (oil/water) nanoemulsions (tea tree essential oil nanoemulsions, TNE) and evaluation of its biological potential. Physiological characterization was carried out using UV, fluorescent, and FT-IR techniques. Various biological activities such as anticancerous, antidiabetic and anti-inflammatory were also estimated. Pharmacokinetics study on TNE was carried out. Encapsulation efficiency of nanoemulsions was found to be 83%. Nanoemulsions were spherical in shape with globule size 308 nm, zeta potential -9.42 and polydispersity index was 0.31. Nanoemulsions were stable even after 50 days of storage at different temperatures. Anti-oxidant potential of TNE was conducted by various assays and IC50 were: Nitric oxide radical scavenging activity:225.1, DPPH radical scavenging activity:30.66, Iron chelating assay:38.73, and Iron reducing assay:39.36. Notable anticancer activity was observed with the percent cell viability of HeLa cells after treatment with 1, 2 and 5 µl of TNE was 82%, 41% and 24%, respectively. Antidiabetic study revealed that TNE inhibited -amylase in a dose-dependent manner, with 88% inhibition at its higher volume of 250 µl. Drug kinetic study revealed that nanoemulsions exhibited first-order model. Based on this, the possible role of M. alternifolia oil-based nanoemulsions in cosmetic, food, and pharma sectors has been discussed.


Asunto(s)
Melaleuca , Aceites Volátiles , Aceite de Árbol de Té , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Melaleuca/química , Células HeLa , Espectroscopía Infrarroja por Transformada de Fourier , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Antiinflamatorios/farmacología ,
13.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119546, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37482133

RESUMEN

Multiple rounds of DNA replication take place in various stages of the life cycle in the human malaria parasite Plasmodium falciparum. Previous bioinformatics analysis has shown the presence of putative Autonomously Replicating Sequence (ARS) like sequences in the Plasmodium genome. However, the actual sites and frequency of replication origins in the P. falciparum genome based on experimental data still remain elusive. Minichromosome maintenance (MCM) proteins are recruited by the Origin recognition complex (ORC) to the origins of replication in eukaryotes including P. falciparum. We used PfMCM6 for chromatin immunoprecipitation followed by sequencing (ChIP-seq) in the quest for identification of putative replication origins in the parasite. PfMCM6 DNA binding sites annotation revealed high enrichment at exon regions. This is contrary to higher eukaryotes that show an inclination of origin sites towards transcriptional start sites. ChIP-seq results were further validated by ChIP-qPCR results as well as nascent strand abundance assay at the selected PfMCM6 enriched sites that also showed preferential binding of PfORC1 suggesting potential of these sites as origin sites. Further, PfMCM6 ChIP-seq data showed a positive correlation with previously published histone H4K8Ac genome-wide binding sites but not with H3K9Ac sites suggesting epigenetic control of replication initiation sites in the parasites. Overall, our data show the genome-wide distribution of PfMCM6 binding sites with their potential as replication origins in this deadly human pathogen that not only broadens our knowledge of parasite DNA replication and its unique biology, it may help to find new avenues for intervention processes.


Asunto(s)
Malaria Falciparum , Parásitos , Animales , Humanos , Plasmodium falciparum/genética , Parásitos/genética , Parásitos/metabolismo , Replicación del ADN/genética , Sitios de Unión , Malaria Falciparum/genética , Cromosomas/metabolismo , Componente 6 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 6 del Complejo de Mantenimiento de Minicromosoma/metabolismo
14.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37498672

RESUMEN

The tumor extracellular matrix (ECM) critically regulates cancer progression and treatment response. Expression of the basement membrane component collagen XVIII (ColXVIII) is induced in solid tumors, but its involvement in tumorigenesis has remained elusive. We show here that ColXVIII was markedly upregulated in human breast cancer (BC) and was closely associated with a poor prognosis in high-grade BCs. We discovered a role for ColXVIII as a modulator of epidermal growth factor receptor tyrosine kinase (ErbB) signaling and show that it forms a complex with ErbB1 and -2 (also known as EGFR and human epidermal growth factor receptor 2 [HER2]) and α6-integrin to promote cancer cell proliferation in a pathway involving its N-terminal portion and the MAPK/ERK1/2 and PI3K/AKT cascades. Studies using Col18a1 mouse models crossed with the mouse mammary tumor virus-polyoma virus middle T antigen (MMTV-PyMT) mammary carcinogenesis model showed that ColXVIII promoted BC growth and metastasis in a tumor cell-autonomous manner. Moreover, the number of mammary cancer stem cells was significantly reduced in the MMTV-PyMT and human cell models upon ColXVIII inhibition. Finally, ablation of ColXVIII substantially improved the efficacy of ErbB-targeting therapies in both preclinical models. In summary, ColXVIII was found to sustain the stemness properties of BC cells and tumor progression and metastasis through ErbB signaling, suggesting that targeting ColXVIII in the tumor milieu may have important therapeutic potential.


Asunto(s)
Neoplasias de la Mama , Colágeno Tipo XVIII , Ratones , Animales , Humanos , Femenino , Colágeno Tipo XVIII/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor ErbB-2/metabolismo , Transformación Celular Neoplásica , Transducción de Señal
15.
Front Big Data ; 6: 1081639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388504

RESUMEN

The Coronavirus (COVID-19) outbreak swept the world, infected millions of people, and caused many deaths. Multiple COVID-19 variations have been discovered since the initial case in December 2019, indicating that COVID-19 is highly mutable. COVID-19 variation "XE" is the most current of all COVID-19 variants found in January 2022. It is vital to detect the virus transmission rate and forecast instances of infection to be prepared for all scenarios, prepare healthcare services, and avoid deaths. Time-series forecasting helps predict future infected cases and determine the virus transmission rate to make timely decisions. A forecasting model for nonstationary time series has been created in this paper. The model comprises an optimized EigenValue Decomposition of Hankel Matrix (EVDHM) and an optimized AutoRegressive Integrated Moving Average (ARIMA). The Phillips Perron Test (PPT) has been used to determine whether a time series is nonstationary. A time series has been decomposed into components using EVDHM, and each component has been forecasted using ARIMA. The final forecasts have been formed by combining the predicted values of each component. A Genetic Algorithm (GA) to select ARIMA parameters resulting in the lowest Akaike Information Criterion (AIC) values has been used to discover the best ARIMA parameters. Another genetic algorithm has been used to optimize the decomposition results of EVDHM that ensures the minimum nonstationarity and maximal utilization of eigenvalues for each decomposed component.

16.
Russ Agric Sci ; 49(1): 100-117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124716

RESUMEN

Cymbopogan martinii, also known as Palmarosa, is an underutilized plant of tropical region. Due to outstanding antioxidant potential it has been used as a part of conventional medicine and beauty product. Regardless of its importance, complete pharmacological and phytochemical studies are still in its early stages. In the current study, Palmarosa essential oil (PRO) was extracted from Cymbopogan martinii and was evaluated for its phytochemicals, antimicrobial and antifungal, anti-inflammatory and anti-diabetic and protection from UV rays. Oil from fresh leaves was extracted and analysed for presence of phytochemicals (Tannin, Flavonoids, and Phenolics). Various antioxidant activities like DPPH (1,1-diphenyl-2-picrylhydrazyl), ABTS (2,2-azinobis-3-ethylbenzothiazoline-6-sulphonic acid), Nitric oxide radical, Hydroxyl radical, iron reducing, iron cheating activity were performed. Antibacterial, anti-inflammatory, Antidiabetic, membrane integrity assay, and UV-absorption assay was also performed. Antifungal activity against "Aspergillosis" and "Mucormycosis" causing fungal strains was also evaluated. High concentration of polyphenolics like Tannin, Flavonoid, phenolics were revealed through phytochemical analysis. GC-FID revealed the presence of Geraniol, major component of Palmarosa oil and other bioactive compound in PRO. PRO showed high anti-inflammatory and anti-diabetic potential and can be used as an Antidiabetic agent due to inhibitory effect on α-amylase activity. Further study revealed that PRO inhibits α-amylase in competitive manner. Hence from the results obtained it is confirmed that the PRO possesses considerable amount of bioactive compounds and can be used in pharmaceutical, food and cosmetic industries.

17.
ACS Chem Neurosci ; 14(10): 1810-1825, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37158255

RESUMEN

Real-time three-dimensional (3-D) imaging is crucial for quantifying correlations among various molecules under acute ischemic stroke. Insights into such correlations may be decisive in selecting molecules capable of providing a protective effect within a shorter period. The major bottleneck is maintaining the cultures under severely hypoxic conditions while simultaneously 3-D imaging intracellular organelles with a microscope. Moreover, comparing the protective effect of drugs and reoxygenation remains challenging. To address this, we propose a novel workflow for the induction of gas-environment-based hypoxia in the HMC-3 cells along with 3-D imaging using laser-scanning-confocal microscopy. The imaging framework is complemented with a pipeline for quantifying time-lapse videos and cell-state classification. First, we show an imaging-based assessment of the in vitro model for hypoxia using a steep gradient in O2 with time. Second, we demonstrate the correlation between mitochondrial superoxide production and cytosolic calcium under acute hypoxia. We then test the efficacy of an L-type calcium channel blocker, compare the results with reoxygenation, and show that the blocker alleviates hypoxic conditions in terms of cytosolic calcium and viability within an acute window of one hour. Furthermore, we show that the drug reduces the expression of oxidative stress markers (HIF1A and OXR1) within the same time window. In the future, this model can also be used to investigate drug toxicity and efficacy under ischemic conditions.


Asunto(s)
Calcio , Accidente Cerebrovascular Isquémico , Humanos , Calcio/metabolismo , Microglía/metabolismo , Hipoxia/metabolismo , Oxidación-Reducción , Oxígeno
18.
Ocul Immunol Inflamm ; : 1-14, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37159104

RESUMEN

This review summarizes the impact of systemic and ocular inflammatory disorders on diabetes mellitus (DM) and diabetic retinopathy (DR). Local inflammation is a key pathology in diabetic retinopathy (DR) and is also an evolving target for clinical therapy. The legacy effects of local inflammation at the intracellular level make DR a persistent self-driven vicious process. Ocular inflammation is accompanied as well as incited by systemic inflammation due to diabetes mellitus (DM) itself. Over the years, a multitude of studies have evaluated the impact of systemic inflammatory disorders (SIDs, like rheumatoid arthritis, lupus, psoriasis, etc.) and anti-inflammatory drugs prescribed for managing them on manifestations of DM. Recent studies have indicated increased insulin resistance to be a result of chronic inflammation, and the anti-inflammatory drugs to have a protective effect towards DM. Very few studies have evaluated the impact of SIDs on DR. Furthermore, the evidence from these studies is conflicting, and while local anti-inflammatory therapy has shown a lot of clinical potential for use in DR, the results of systemic anti-inflammatory therapies have been inconsistent. The impact of local ocular inflammation due to uveitis on DR is a crucial aspect that has not been evaluated well at present. Initial pre-clinical studies and small-sized clinical reports have shown a strong and positive relationship between the presence of uveitis and the severity of DR as well as its progression, while larger cross-sectional patient surveys have refuted the same. The long term impact of ocular inflammation due to uveitis on DR needs to be studied while adjusting for confounders.

19.
J Appl Microbiol ; 134(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37160352

RESUMEN

AIMS: To perform an integrated comparative analysis of metabolic pathway to understand coenzyme Q10 (CoQ10) production in Agrobacterium tumefaciens. METHODS AND RESULTS: Comparative analysis of the CoQ10 metabolic pathway in 10 organisms using a genome to KEGG orthology program (G2KO) and the KEGG database elucidated the completeness of the production pathway in A. tumefaciens. The specific roles of the key precursors and the enzymes in the metabolic network were subsequently confirmed using pathway inhibitors and enhancers. While the use of fosmidomycin and glyphosate was found to inhibit CoQ10 production by 54.54% to 99%, the supplementation of polyprenyl pyrophosphate of the methylerythritol 4-phosphate pathway and 4-hydroxybenzoate precursor of the shikimate pathway did increse the production of CoQ10 by 2.3-fold. CONCLUSIONS: The present study provides a comprehensive understanding of the CoQ10 biosynthetic pathway in A. tumefaciens, which would assist rational metabolic engineering strategies for augmenting CoQ10 biosynthesis.


Asunto(s)
Agrobacterium tumefaciens , Redes y Vías Metabólicas , Agrobacterium tumefaciens/genética , Fosfatos
20.
Russ Agric Sci ; 49(2): 172-183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37220552

RESUMEN

Palmrosa essential oil (PEO) from Cymbopogon khasianus, is used as complementary and traditional medicine worldwide. The present study aimed at compositional profiling of PEO and molecular docking of PEO bioactive compound geraniol against fungal enzymes chitin synthase (CS), UDP-glycosyltransferase (UDPG) and glucosamine-6-phosphate synthase (GPS), as apposite sites for drug designing against "Aspergillosis" and "Mucormycosis" and in vitro confirmation. Compositional profile of PEO was completed by GC-FID analysis. For molecular docking, Patch-dock tool was conducted. Ligand-enzyme 3D interactions were also calculated. ADMET properties (absorption, distribution, metabolism, excretion and toxicity) were also calculated. GC-FID discovered the occurrence of geraniol as a major component in PEO, thus nominated for docking analysis. Docking analysis specified active binding of geraniol to GPS, CS and UDPG fungal enzymes. Wet-lab authentication was achieved by three fungal strains Aspergillus niger, A. oryzae and Mucor sp. Docking studies revealed that ligand geraniol exhibited intercations with GPS, CS and UDPG fungal enzymes by H-bond and hydrophobic interactions. Geraniol obeyed LIPINSKY rule, and exhibited adequate bioactivity. Wet lab results indicated that PEO was able to inhibit fungal growth against "Aspergillosis" and "Mucormycosis".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA