Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 36(13): 6618-6626, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005532

RESUMEN

Bi2Te3 is a well-known thermoelectric material that was first investigated in the 1960s, optimized over decades, and is now one of the highest performing room-temperature thermoelectric materials to-date. Herein, we report on the colloidal synthesis, growth mechanism, and thermoelectric properties of Bi2Te3 nanoplates with a single nanopore in the center. Analysis of the reaction products during the colloidal synthesis reveals that the reaction progresses via a two-step nucleation and epitaxial growth: first of elemental Te nanorods and then the binary Bi2Te3 nanoplate growth. The rates of epitaxial growth can be controlled during the reaction, thus allowing the formation of a single nanopore in the center of the Bi2Te3 nanoplates. The size of the nanopore can be controlled by changing the pH of the reaction solution, where larger pores with diameter of ∼50 nm are formed at higher pH and smaller pores with diameter of ∼16 nm are formed at lower pH. We propose that the formation of the single nanopore is mediated by the Kirkendall effect and thus the reaction conditions allow for the selective control over pore size. Nanoplates have well-defined hexagonal facets as seen in the scanning and transmission electron microscopy images. The single nanopores have a thin amorphous layer at the edge, revealed by transmission electron microscopy. Thermoelectric properties of the pristine and single-nanopore Bi2Te3 nanoplates were measured in the parallel and perpendicular directions. These properties reveal strong anisotropy with a significant reduction to thermal conductivity and increased electrical resistivity in the perpendicular direction due to the higher number of nanoplate and nanopore interfaces. Furthermore, Bi2Te3 nanoplates with a single nanopore exhibit ultralow lattice thermal conductivity values, reaching ∼0.21 Wm-1K-1 in the perpendicular direction. The lattice thermal conductivity was found to be systematically lowered with pore size, allowing for the realization of a thermoelectric figure of merit, zT of 0.75 at 425 K for the largest pore size.

2.
Dalton Trans ; 53(32): 13280-13297, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39046257

RESUMEN

The field of 2D nanomaterials is ever-growing with a myriad of synthetic advancements that have been used to obtain such materials. There are top-down, as well as bottom-up, fabrication methods for obtaining 2D nanomaterials; however, synthesis of 2D nanomaterials from solution offers a simple scalable way to control size, shape, and surface. This review outlines the recent advances in colloidal polyol synthesis of 2D nanomaterials and provides perspectives on the similarities and differences in various syntheses. Various materials classes are presented and discussed, including metals, oxides, chalcogenides, and halides, that can be synthesized as 2D nanomaterials via a polyol process. Throughout the literature, polyol media is demonstrated to be versatile not only as a solvent and reducing agent for metal precursors but also as a binding and shape-directing agent for many 2D nanomaterials. Polyols also offer the ability to dissolve various surfactants and additives that can further control the morphology and composition of various nanomaterials. In this review, we outline the various 2D materials that have been realized via the solution polyol route.

3.
ACS Appl Electron Mater ; 6(5): 2816-2825, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38828036

RESUMEN

Thermoelectrics are an important class of materials with great potential in alternative energy applications. In this study, two-dimensional (2D) nanoplates of the layered chalcogenides, Sb2Te3 and Bi2Te3, are synthesized and composites of the two are investigated for their thermoelectric properties. The two materials, Sb2Te3 and Bi2Te3, were synthesized as hexagonal, 2D nanoplates via a colloidal polyol route. The as-synthesized Sb2Te3 and Bi2Te3 vary drastically from one another in their lateral and vertical dimensions as revealed by scanning electron microscopy and atomic force microscopy. The single crystalline nanoplate nature is deduced by high-resolution transmission electron microscopy and selected area electron diffraction. Nanoplates have well-defined hexagonal facets as seen in the scanning and transmission electron microscopy images. The nanoplates were consolidated as an anisotropic nanostructured pellet via spark plasma sintering. Preferred orientation observed in the powder X-ray diffraction pattern and scanning electron microscopy images of the fractured pellets confirm the anisotropic structure of the nanoplates. Thermoelectric properties in the parallel and perpendicular directions were measured, revealing strong anisotropy with a significant reduction to thermal conductivity in the perpendicular direction due to increased phonon scattering at nanoplate interfaces. All compositions, except that of the 25% Bi2Te3 nanoplate composite, behave as degenerate semiconductors with increasing electrical resistivity as the temperature increases. The Seebeck coefficient is also increased dramatically in the nanocomposites, the highest reaching 210 µV/K for 15% Bi2Te3. The increase in Seebeck is attributed to energy carrier filtering at the nanoplate interfaces. Overall, these enhanced thermoelectric properties lead to a drastic increase in the thermoelectric performance in the perpendicular direction, with zT ∼ 1.26, for the 15% Bi2Te3 nanoplate composite at 450 K.

4.
Inorg Chem ; 63(18): 8109-8119, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38651638

RESUMEN

An electride is a compound that contains a localized electron in an empty crystallographic site. This class of materials has a wide range of applications, including superconductivity, batteries, photonics, and catalysis. Both polymorphs of Yb5Sb3 (the orthorhombic Ca5Sb3F structure type (ß phase) and hexagonal Mn5Si3 structure type (α phase)) are known to be electrides with electrons localized in 0D tetrahedral cavities and 1D octahedral chains, respectively. In the case of the orthorhombic ß phase, an interstitial H can occupy the 0D tetrahedral cavity, accepting the anionic electron that would otherwise occupy the site, providing the formula of Yb5Sb3Hx. DFT computations show that the hexagonal structure is energetically favored without hydrogen and that the orthorhombic structure is more stable with hydrogen. Polycrystalline samples of orthorhombic ß phase Yb5Sb3Hx (x = 0.25, 0.50, 0.75, 1.0) were synthesized, and both PXRD lattice parameters and 1H MAS NMR were used to characterize H composition. Magnetic and electronic transport properties were measured to characterize the transition from the electride (semimetal) to the semiconductor. Magnetic susceptibility measurements indicate a magnetic moment that can be interpreted as resulting from either the localized antiferromagnetically coupled electride or the presence of a small amount of Yb3+. At lower H content (x = 0.25, 0.50), a low charge carrier mobility consistent with localized electride states is observed. In contrast, at higher H content (x = 0.75, 1.0), a high charge carrier mobility is consistent with free electrons in a semiconductor. All compositions show low thermal conductivity, suggesting a potentially promising thermoelectric material if charge carrier concentration can be fine-tuned. This work provides an understanding of the structure and electronic properties of the electride and semiconductor, Yb5Sb3Hx, and opens the door to the interstitial design of electrides to tune thermoelectric properties.

6.
ACS Appl Energy Mater ; 6(20): 10628-10638, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37886224

RESUMEN

Yb14ZnSb11 is one of the newest additions to the high-performance Yb14MSb11 (M = Mn, Mg, and Zn) family of p-type high-temperature thermoelectric materials and shows promise for forming passivating oxide coatings. Work on the oxidation of rare earth (RE)-substituted Yb14-xRExMnSb11 single crystals suggested that substituting late RE elements may form more stable passivation oxide coatings. Yb14-xLuxZnSb11 (x = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7) samples were synthesized, and Lu-substitution's effects on thermoelectric and oxidation properties are investigated. The solubility of Lu within the system was found to be quite low with xmax ∼ 0.3; samples with x > 0.3 contained impurities of LuSb. Goldsmid-Sharp band gap estimations show that introducing Lu reduces the apparent band gap. Because of this, the Lu-substituted samples show a reduction in the maximum Seebeck coefficient, decreasing the high-temperature zT. This contrasts with the impact of Lu3+ substitution in Yb14MnSb11, where the addition of Lu3+ for Yb2+ results in increases in both resistivity and the Seebeck coefficient. Oxidation of the x = 0.3 solid solution was studied by thermogravimetric- differential scanning calorimetry , powder X-ray diffraction, scanning electron microscopy-energy-dispersive spectroscopy, and optical images. The samples show no mass gain before 785 K, and ensuing oxidation reactions are proposed. At the highest temperatures, significant amounts of Yb14-xLuxZnSb11 remained beneath an oxide coating, suggesting that passivation may be achievable in oxygen environments.

7.
Chem Mater ; 35(18): 7719-7729, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37780411

RESUMEN

Low-dimensional materials have unique optical, electronic, mechanical, and chemical properties that make them desirable for a wide range of applications. Nano-scaling materials to confine transport in at least one direction is a common method of designing materials with low-dimensional electronic structures. However, bulk materials give rise to low-dimensional electronic structures when bonding is highly anisotropic. Layered Zintl phases are excellent candidates for investigation due to their directional bonding, structural variety, and tunability. However, the complexity of the structure and composition of many layered Zintl phases poses a challenge for producing phase-pure bulk samples to characterize. Eu11Zn4Sn2As12 is a layered Zintl phase of significant complexity that is of interest for its magnetic, electronic, and thermoelectric properties. To prepare phase-pure Eu11-xNaxZn4Sn2As12, a binary EuAs phase was employed as a precursor, along with NaH. Experimental measurements reveal low thermal conductivity and a high Seebeck coefficient, while theoretical electronic structure calculations reveal a transition from a 3D to 2D electronic structure with increasing carrier concentration. Simulated thermoelectric properties also indicate anisotropic transport, and thermoelectric property measurements confirm the nonparabolicity of the relevant bands near the Fermi energy. Thermoelectric efficiency is known to improve as the dimensionality of the electronic structure is decreased, making this a promising material for further optimization and opening the door to further exploitation of layered Zintl phases with low-dimensional electronic structures for thermoelectric applications.

8.
Chem Mater ; 35(18): 7355-7362, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37780412

RESUMEN

The synthesis of new compounds and crystal structures remains an important research endeavor in pursuing technologically relevant materials. The Zintl concept is a guidepost for the design of new functional solid-state compounds. Zintl phases are named in recognition of Eduard Zintl, a German chemist who first studied a subgroup of intermetallics prepared with electropositive metals combined with main-group metalloids from groups 13-15 in the 1930s. Unlike intermetallic compounds, where metallic bonding is the norm, Zintl phases exhibit a combination of ionic and covalent bonding and are typically semiconductors. Zintl phases provide a palette for iso- and aliovalent substitutions that can each contribute uniquely to the properties. Zintl electron-counting rules can be employed to interrogate a structure type and develop a foundation of structure-property relationships. Employing substitutional chemistry allows for the rational design of new Zintl compounds with technological properties, such as magnetoelectronics, thermoelectricity, and other energy storage and conversion capabilities. Discovering new structure types and compositions through this approach is also possible. The background on the strength and innovation of the Zintl concept and a few highlights of Zintl phases with promising thermoelectric properties in the context of structural and electronic design will be provided.

9.
10.
J Chem Phys ; 158(16)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37093142

RESUMEN

Crystallization of amorphous materials by thermal annealing has been investigated for numerous applications in the fields of nanotechnology, such as thin-film transistors and thermoelectric devices. The phase transition and shape evolution of amorphous germanium (Ge) and Ag@Ge core-shell nanoparticles with average diameters of 10 and 12 nm, respectively, were investigated by high-energy electron beam irradiation and in situ heating within a transmission electron microscope. The transition of a single Ge amorphous nanoparticle to the crystalline diamond cubic structure at the atomic scale was clearly demonstrated. Depending on the heating temperature, a hollow Ge structure can be maintained or transformed into a solid Ge nanocrystal through a diffusive process during the amorphous to crystalline phase transition. Selected area diffraction patterns were obtained to confirm the crystallization process. In addition, the thermal stability of Ag@Ge core-shell nanoparticles with an average core of 7.4 and a 2.1 nm Ge shell was studied by applying the same beam conditions and temperatures. The results show that at a moderate temperature (e.g., 385 °C), the amorphous Ge shell can completely crystallize while maintaining the well-defined core-shell structure, while at a high temperature (e.g., 545 °C), the high thermal energy enables a freely diffusive process of both Ag and Ge atoms on the carbon support film and leads to transformation into a phase segregated Ag-Ge Janus nanoparticle with a clear interface between the Ag and Ge domains. This study provides a protocol as well as insight into the thermal stability and strain relief mechanism of complex nanostructures at the single nanoparticle level with atomic resolution.

11.
Inorg Chem ; 62(15): 6003-6010, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37023266

RESUMEN

The compound Ba2ZnSb2 has been predicted to be a promising thermoelectric material, potentially achieving zT > 2 at 900 K due to its one-dimensional chains of edge-shared [ZnSb4/2]4- tetrahedra and interspersed Ba cations. However, the high air sensitivity of this material makes it difficult to measure its thermoelectric properties. In this work, isovalent substitution of Eu for Ba was carried out to make Ba2-xEuxZnSb2 in order to improve the stability of the material in air and to allow characterization of thermal and electronic properties of three different compositions (x = 0.2, 0.3, and 0.4). Polycrystalline samples were synthesized using binary precursors via ball milling and annealing, and their thermoelectric properties were measured. Samples showed low thermal conductivity (<0.8 W/m K), a high Seebeck coefficient (350-550 µV/K), and high charge carrier mobility (20-35 cm2/V) from 300 to 500 K, consistent with predictions of high thermoelectric efficiency. Evaluation of the thermoelectric quality factor suggests that a higher zT can be attained if the carrier concentration can be increased via doping.

12.
Inorg Chem ; 62(6): 2694-2704, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36720200

RESUMEN

The solid solutions of Yb14-xRExZnSb11 (RE = Sc, Y, La, Lu, and Gd; 0.2 ≤ x ≤ 0.7) were prepared to probe the intermediate valency of Yb in Yb14ZnSb11. The substitution of Yb with RE3+ elements should reduce or remove the intermediate valency of the remaining Yb ions. Large crystals are grown from Sn-flux, and the structure and magnetic susceptibility are presented. All compounds crystallize in the Ca14AlSb11 structure type and the RE3+ ions show Yb site substitution preferences that correlate with size. Two compositions of Yb14-xYxZnSb11 were investigated [x = 0.38(3), 0.45(3)] by temperature-dependent magnetic susceptibility and the broad feature in magnetic susceptibility measurements at 85 K in pristine Yb14ZnSb11 attributed to valence fluctuation decreases and is absent for x = 0.45(3). In compounds with nonmagnetic RE3+ substitutions (Sc, Y, La, and Lu), temperature-dependent magnetic susceptibility shows a transition from intermediate valency fluctuation toward temperature-independent (Y, La, and Lu) or Curie-Weiss behavior and possibly low temperature heavy Fermion behavior (Sc). In the example of the magnetic rare earth substitution, RE = Gd, the Curie-Weiss-dependent magnetic moment of Gd3+ is consistent with x. Hall resistivity of Yb14-xYxZnSb11 showed that the carrier concentration decreases with x and the signature of the low-T intermediate valence state seen for x = 0 is suppressed for x = 0.38 and gone for x = 0.45.

13.
ACS Appl Mater Interfaces ; 14(41): 47246-47254, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36217847

RESUMEN

Yb14MSb11 (M = Mg, Mn, Zn) are p-type Zintl phases with high thermoelectric efficiencies at 1000 °C and melting points above 1200 °C under vacuum and/or inert atmosphere. In a thermoelectric generator, even within a vacuum jacket, small amounts of oxygen may be present, and therefore, elucidating chemical reactions in the presence of air or oxygen provides a framework for engineering design. The oxidation of Yb14MSb11 was investigated from room temperature to 1000 °C in dry air with thermogravimetric/differential scanning calorimetry (TG/DSC) on small pellets and visually after heat treatment to 1000 °C under ambient conditions on large pellets. Scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and powder X-ray diffraction provide identification of the oxidation products. In the presence of dry air, Yb14MSb11 initially oxidizes initially slowly at room temperature with a sweeping exotherm and weight gain with rapid oxidation at 400 °C, after which the exotherm signal plateaus at about 600 °C, with M = Zn showing the smallest overall exothermic curve. All samples showed a paired endo-/exotherm at 785-803 °C, consistent with the melting/solidification of YbSb2, which in the case of M = Mg, Mn extrudes from the sample. The various sections of the pellets─outer layer, inner layer, and core are analyzed, and oxidation reactions are proposed. After cycling to 1000 °C, the outer layer is composed of Yb2O3 with small amounts of the corresponding metal oxides. The inner layer shows delamination by inward diffusion of oxygen and outward diffusion of Sb or Sb oxide-containing phases, and the core shows Yb14MSb11. Yb14ZnSb11 shows the best resistance to oxidation and may provide a promising material for further passivation optimization.

14.
Sci Adv ; 8(36): eabq3780, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070392

RESUMEN

Yb14MnSb11 and Yb14MgSb11 are among the best p-type high-temperature (>1200 K) thermoelectric materials, yet other compounds of this Ca14AlSb11 structure type have not matched their stability and efficiency. First-principles computations show that the features in the electronic structures that have been identified to lead to high thermoelectric performances are present in Yb14ZnSb11, which has been presumed to be a poor thermoelectric material. We show that the previously reported low power factor of Yb14ZnSb11 is not intrinsic and is due to the presence of a Yb9Zn4+xSb9 impurity uniquely present in the Zn system. Phase-pure Yb14ZnSb11 synthesized through a route avoiding the impurity formation reveals its exceptional high-temperature thermoelectric properties, reaching a peak zT of 1.2 at 1175 K. Beyond Yb14ZnSb11, the favorable band structure features for thermoelectric performance are universal among the Ca14AlSb11 structure type, opening the possibility for high-performance thermoelectric materials.

15.
ACS Appl Mater Interfaces ; 14(21): 24886-24896, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35580304

RESUMEN

Thermoelectric materials convert heat energy into electricity, hold promising capabilities for energy waste harvesting, and may be the future of sustainable energy utilization. In this work, we successfully synthesized core-shell Bi2Te3/Sb2Te3 (BTST) nanostructured heterojunctions via a two-step solution route. Samples with different Bi2Te3 core to Sb2Te3 shell ratios could be synthesized by controlling the reaction precursors. Scanning electron microscopy images show well-defined hexagonal nanoplates and the distinct interfaces between Bi2Te3 and Sb2Te3. The similarity of the area ratios with the precursor ratios indicates that the growth of the Sb2Te3 shell mostly took place on the lateral direction rather than the vertical. Transmission electron microscopy revealed the crystalline nature of the as-synthesized Bi2Te3 core and Sb2Te3 shell. Energy-dispersive X-ray spectroscopy verified the lateral growth of a Sb2Te3 shell on the Bi2Te3 core. Thermoelectric properties were measured on pellets obtained from powders via spark plasma sintering with two different directions, in-plane and out-of-plane, showing anisotropic properties due to the nanostructure alignment in the pellets. All samples showed a degenerate semiconducting character with the electrical resistivity increasing with the temperature. Starting from Sb2Te3, the electrical resistivity increases with the increase in amounts of Bi2Te3. Thermal conductivity is lowered due to the increase in interfaces and additional phonon scattering. We show that the out-of-plane direction of the BTST 1-3 sample (where 1-3 indicates the ratio of BT to ST) demonstrates a high Seebeck value of 145 µV/K at 500 K which may be attributed to an energy filtering effect across the heterojunction interfaces. The highest overall zT is observed for the BTST 1-3 sample in the out-of-plane direction at 500 K. The zT values increase continuously over the measured temperature range, indicating a probable higher value at increased temperatures.

16.
ACS Mater Au ; 2(3): 330-342, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36855386

RESUMEN

Colloidal germanium (Ge) nanocrystals (NCs) are of great interest with possible applications for photovoltaics and near-IR detectors. In many examples of colloidal reactions, Ge(II) precursors are employed, and NCs of diameter ∼3-10 nm have been prepared. Herein, we employed a two-step microwave-assisted reduction of GeI4 in oleylamine (OAm) to prepare monodispersed Ge NCs with a size of 18.9 ± 1.84 nm. More importantly, the as-synthesized Ge NCs showed high crystallinity with single-crystal nature as indicated by powder X-ray diffraction, selected area electron diffraction, and high-resolution transmission electron microscopy. The Tauc plot derived from photothermal deflection spectroscopy measurement on Ge NCs thin films shows a decreased bandgap of the Ge NCs obtained from GeI4 compared with that of the Ge NCs from GeI2 with a similar particle size, indicating a higher crystallinity of the samples prepared with the two-step reaction from GeI4. The calculated Urbach energy indicates less disorder in the larger NCs. This disorder might correlate with the fraction of surface states associated with decreased particle size or with the increased molar ratio of ligands to germanium. Solutions involved in this two-step reaction were investigated with 1H NMR spectroscopy and high-resolution mass spectrometry (MS). One possible reaction pathway is proposed to unveil the details of the reaction involving GeI4 and OAm. Overall, this two-step synthesis produces high-quality Ge NCs and provides new insight on nanoparticle synthesis of covalently bonding semiconductors.

17.
Chem Soc Rev ; 50(23): 13236-13252, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34726681

RESUMEN

Multimetallic clusters can be described as building blocks in intermetallics, compounds prepared from all metals and/or semi-metals, and in Zintl phases, a subset of intermetallics containing metals with large differences in electronegativity. In many cases, these intermetallic and Zintl phases provide the first clue for the possibilities of bond formation between metals and semi-metals. Recent advances in multimetallic clusters found in Zintl phases and nanoparticles focusing on Ge with transition metals and semi-metals is presented. Colloidal routes to Ge nanocrystals provide an opportunity for kinetically stabilized Ge-metal and Ge-semi-metal bonding. These routes provide crystalline nanoclusters of Ge, hereafter referred to as nanocrystals, that can be structurally characterized. Compositions of Ge nanocrystals containing transition metals, and the semi-metals, Sb, Bi, and Sn, whose structures have recently been elucidated through EXAFS, will be presented along with potential applications.

18.
Inorg Chem ; 60(17): 13596-13606, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34415765

RESUMEN

Solid solutions of Yb2-xAxCdSb2 (A = Ca, Sr, Eu; x ≤ 1) are of interest for their promising thermoelectric (TE) properties. Of these solid solutions, Yb2-xCaxCdSb2 has end members with different crystal structures. Yb2CdSb2 crystallizes in the polar space group Cmc21, whereas Ca2CdSb2 crystallizes in the centrosymmetric space group Pnma. Other solid solutions, Yb2-xAxCdSb2 (A = Sr, Eu), crystallize in the polar space group for x ≤ 1, and compositions with x ≥ 1 have not been reported. Both structure types are composed of corner-sharing CdSb4 tetrahedra condensed into sheets that differ by the stacking of the layers. Single crystals of the solid solution Yb2-xCaxCdSb2 (x = 0-1) were studied to elucidate the structural transition between the Yb2CdSb2 and Ca2CdSb2 structure types. For x ≤ 1, the structures remain in the polar space group Cmc21. As the Ca content is increased, a positional disorder arises in the intralayer cation sites (Yb2/Ca2) and the Cd site, resulting in inversion of the CdSb4 tetrahedral chain. This phenomenon could be indicative of an intergrowth of the opposing space group. The TE properties of polycrystalline samples of Yb2-xCaxCdSb2 (x ≤ 1) were measured from 300 to 525 K. The lattice thermal conductivity is extremely low (0.3-0.4 W/m·K) and the Seebeck coefficients are high (100-180 µV/K) across the temperature range. First-principles calculations show a minimum in the thermal conductivity for the x = 0.3 composition, in good agreement with experimental data. The low thermal conductivity stems from the acoustic branches being confined to low frequencies and a large number of phonon scattering channels provided by the localized optical branches. The TE quality factor of the Yb1.7A0.3CdSb2 (A = Ca, Sr, Eu) series has been calculated and predicts that the A = Ca and Sr solid solutions may not improve with carrier concentration optimization but that the Eu series is worthy of additional modifications. Overall, the x = 0.3 compositions provide the highest zT because they provide the best electronic properties with the lowest thermal conductivity.

19.
Acta Crystallogr C Struct Chem ; 77(Pt 6): 281-285, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089251

RESUMEN

A rare-earth-containing compound, ytterbium aluminium antimonide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb-Al-Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1-)(1b - Sb2-)2(2b - Sb1-)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetrahedra, [AlSb2Sb2/2]6-, with Yb2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.

20.
Inorg Chem ; 60(8): 5711-5723, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33784079

RESUMEN

The structure, magnetic properties, and 151Eu and 119Sn Mössbauer spectra of the solid-solution Eu11-xSrxZn4Sn2As12 are presented. A new commensurately modulated structure is described for Eu11Zn4Sn2As12 (R3m space group, average structure) that closely resembles the original structural description in the monoclinic C2/c space group with layers of Eu, puckered hexagonal Zn2As3 sheets, and Zn2As6 ethane-like isolated pillars. The solid-solution Eu11-xSrxZn4Sn2As12 (0 < x < 10) is found to crystallize in the commensurately modulated R3 space group, related to the parent phase but lacking the mirror symmetry. Eu11Zn4Sn2As12 orders with a saturation plateau at 1 T for 7 of the 11 Eu2+ cations ferromagnetically coupled (5 K) and shows colossal magnetoresistance at 15 K. The magnetic properties of Eu11Zn4Sn2As12 are investigated at higher fields, and the ferromagnetic saturation of all 11 Eu2+ cations occurs at ∼8 T. The temperature-dependent magnetic properties of the solid solution were investigated, and a nontrivial structure-magnetization correlation is revealed. The temperature-dependent 151Eu and 119Sn Mössbauer spectra confirm that the europium atoms in the structure are all Eu2+ and that the tin is consistent with an oxidation state of less than four in the intermetallic region. The spectral areas of both Eu(II) and Sn increase at the magnetic transition, indicating a magnetoelastic effect upon magnetic ordering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA