Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Network ; : 1-24, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014986

RESUMEN

Quantum key distribution (QKD) is a secure communication method that enables two parties to securely exchange a secret key. The secure key rate is a crucial metric for assessing the efficiency and practical viability of a QKD system. There are several approaches that are utilized in practice to calculate the secure key rate. In this manuscript, QKD and error rate optimization based on optimized multi-head self-attention and gated-dilated convolutional neural network (QKD-ERO-MSGCNN) is proposed. Initially, the input signals are gathered from 6G wireless networks which face obstacles to channel. For extending maximum transmission distances and improving secret key rates, the signals are fed to the variable velocity strategy particle swarm optimization algorithm, then the signals are fed to MSGCNN for analysing the quantum bit error rate reduction. The MSGCNN is optimized by intensified sand cat swarm optimization. The performance of the QKD-ERO-MSGCNN approach attains 15.57%, 23.89%, and 31.75% higher accuracy when analysed with existing techniques, like device-independent QKD utilizing random quantum states, practical continuous-variable QKD and feasible optimization parameters, entanglement and teleportation in QKD for secure wireless systems, and QKD for large scale networks methods, respectively.

2.
Chemosphere ; 309(Pt 1): 136525, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36210577

RESUMEN

In digital era, energy efficient building remains a hot research topic because of increasing concern regarding their environmental impact and energy consumption. Designing a suitable energy efficient building based on their layout namely overall areas, distribution of the glazing areas, orientation, height, and relative compactness. Such components directly impact the heating load (HL) and cooling load (CL) of residential buildings. A precise predicting of load facilitates effective management of energy consumption and improves the quality of life. Lately, several studies have been implemented to predict the CL and HL. The most significant and challenging parts of predictive are defining the effective input parameter and developing a higher accuracy predictive model. The accuracy of predictive model based on machine learning algorithm must be enhanced by hybrid model. With this motivation, this article introduces an Improved Harris Hawks Optimization with Hybrid Deep Learning Based Heating and Cooling Load Prediction (IHHOHDL-HCLP) model on Residential Buildings. The major aim of the IHHOHDL-HCLP model is to determine the CL and HL to accomplish effective energy utilization. To accomplish this, the IHHOHDL-HCLP primarily pre-processes the raw data in two levels namely min-max normalization and polynomial equation. In addition, the HDL model involves convolutional neural network (CNN) along with long short-term memory (LSTM) and bidirectional long short-term memory (BiLSTM) for HL and CL prediction process. Finally, the IHHO technique was applied for fine-tuning the hyperparameters related to the DL model. The IHHOHDL-HCLP model has demonstrated maximum prediction results with low RMSE values of 0.00874 and 0.00821, respectively, when applied to HL and CL, respectively. The experimental result analysis of the IHHOHDL-HCLP model demonstrates the better performance of the IHHOHDL-HCLP model over other DL models.


Asunto(s)
Aprendizaje Profundo , Falconiformes , Animales , Calefacción , Calidad de Vida , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA