Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559081

RESUMEN

Problem: All trainees, especially those from historically minoritized backgrounds, experience stresses that may reduce their continuation in science, technology, engineering, math, and medicine (STEMM) careers. The Johns Hopkins University School of Medicine is one of ~45 institutions with a National Institutes of Health funded Postbaccalaureate Research Education Program (PREP) that provides mentoring and a year of fulltime research to prepare students from historically excluded groups for graduate school. Having experienced the conflation of stresses during the COVID-19 pandemic and related shutdown, we realized our program lacked a component that explicitly helped PREP Scholars recognize and cope with non-academic stresses (financial, familial, social, mental) that might threaten their confidence and success as scientists and future in STEMM. Intervention: We developed an early-intervention program to help Scholars develop life-long skills to become successful and resilient scientists. We developed a year-long series comprised of 9 workshops focused on community, introspection, financial fitness, emotional intelligence, mental health, and soft-skills. We recruited and compensated a cohort of PhD students and postdoctoral fellows to serve as Peer Mentors, to provide a community and the safest 'space' for Scholars to discuss personal concerns. Peer Mentors were responsible for developing and facilitating these Community-Building Wellness Workshops (CBWW). Context: CBWW were created and exectued as part of the larger PREP program. Workshops included a PowerPoint presentation by Peer Mentors that featured several case studies that prompted discussion and provided time for small-group discussions between Scholars and Peer Mentors. We also included pre- and post-work for each workshop. These touch-points helped Scholars cultivate the habit of introspection. Impact: The CBWW exceeded our goals. Both Peer Mentors and Scholars experienced strong mutual support, and Scholars developed life-long skills. Notably, several Scholars who had been experiencing financial, mental or mentor-related stress immediately brought this to the attention of program leadership, allowing early and successful intervention. At the completion of CBWW, PREP Scholars reported implementing many workshop skills into practice, were reshaping their criteria for choosing future mentors, and evaluating career decisions. Strikingly, Peer Mentors found they also benefitted from the program as well, suggesting a potential larger scope for the role of CBWW in academia. Lessons Learned: Peer Mentors were essential in creating a safe supportive environment that facilitated discussions, self-reflection, and self-care. Providing fair compensation to Peer Mentors for their professional mentoring and teaching contributions was essential and contributed meaningfully to the positive energy and impact of this program.

2.
Biochem J ; 480(15): 1165-1182, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37459121

RESUMEN

The Hippo pathway controls tissue growth and regulates stem cell fate through the activities of core kinase cassette that begins with the Sterile 20-like kinase MST1/2. Activation of MST1/2 relies on trans-autophosphorylation but the details of the mechanisms regulating that reaction are not fully elucidated. Proposals include dimerization as a first step and include multiple models for potential kinase-domain dimers. Efforts to verify and link these dimers to trans-autophosphorylation were unsuccessful. We explored the link between dimerization and trans-autophosphorylation for MST2 and the entire family of MST kinases. We analyzed crystal lattice contacts of structures of MST kinases and identified an ensemble of kinase-domain dimers compatible with trans-autophosphorylation. These dimers share a common dimerization interface comprised of the activation loop and αG-helix while the arrangements of the kinase-domains within the dimer varied depending on their activation state. We then verified the dimerization interface and determined its function using MST2. Variants bearing alanine substitutions of the αG-helix prevented dimerization of the MST2 kinase domain both in solution and in cells. These substitutions also blocked autophosphorylation of full-length MST2 and its Drosophila homolog Hippo in cells. These variants retain the same secondary structure as wild-type and capacity to phosphorylate a protein substrate, indicating the loss of MST2 activation can be directly attributed to a loss of dimerization rather than loss of either fold or catalytic function. Together this data functionally links dimerization and autophosphorylation for MST2 and suggests this activation mechanism is conserved across both species and the entire MST family.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Serina-Treonina Quinasas/metabolismo , Dimerización , Fosforilación , Vía de Señalización Hippo
3.
bioRxiv ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945437

RESUMEN

The Hippo pathway controls tissue growth and regulates stem cell fate through the activities of core kinase cassette that begins with the Sterile 20-like kinase MST1/2. Activation of MST1/2 relies on trans -autophosphorylation but the details of the mechanisms regulating that reaction are not fully elucidated. Proposals include dimerization as a first step and include multiple models for potential kinase-domain dimers. Efforts to verify and link these dimers to trans -autophosphorylation were unsuccessful. We explored the link between dimerization and trans -autophosphorylation for MST2 and the entire family of MST kinases. We analyzed crystal lattice contacts of structures of MST kinases and identified an ensemble of kinase-domain dimers compatible with trans -autophosphorylation. These dimers share a common dimerization interface comprised of the activation loop and αG-helix while the arrangements of the kinase-domains within the dimer varied depending on their activation state. We then verified the dimerization interface and determined its function using MST2. Variants bearing alanine substitutions of the αG-helix prevented dimerization of the MST2 kinase domain both in solution and in cells. These substitutions also blocked autophosphorylation of full-length MST2 and its Drosophila homolog Hippo in cells. These variants retain the same secondary structure as wild-type and capacity to phosphorylate a protein substrate, indicating the loss of MST2 activation can be directly attributed to a loss of dimerization rather than loss of either fold or catalytic function. Together this data functionally links dimerization and autophosphorylation for MST2 and suggests this activation mechanism is conserved across both species and the entire MST family.

4.
Proc Natl Acad Sci U S A ; 120(14): e2221103120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996108

RESUMEN

In many organs, small openings across capillary endothelial cells (ECs) allow the diffusion of low-molecular weight compounds and small proteins between the blood and tissue spaces. These openings contain a diaphragm composed of radially arranged fibers, and current evidence suggests that a single-span type II transmembrane protein, plasmalemma vesicle-associated protein-1 (PLVAP), constitutes these fibers. Here, we present the three-dimensional crystal structure of an 89-amino acid segment of the PLVAP extracellular domain (ECD) and show that it adopts a parallel dimeric alpha-helical coiled-coil configuration with five interchain disulfide bonds. The structure was solved using single-wavelength anomalous diffraction from sulfur-containing residues (sulfur SAD) to generate phase information. Biochemical and circular dichroism (CD) experiments show that a second PLVAP ECD segment also has a parallel dimeric alpha-helical configuration-presumably a coiled coil-held together with interchain disulfide bonds. Overall, ~2/3 of the ~390 amino acids within the PLVAP ECD adopt a helical configuration, as determined by CD. We also determined the sequence and epitope of MECA-32, an anti-PLVAP antibody. Taken together, these data lend strong support to the model of capillary diaphragms formulated by Tse and Stan in which approximately ten PLVAP dimers are arranged within each 60- to 80-nm-diameter opening like the spokes of a bicycle wheel. Passage of molecules through the wedge-shaped pores is presumably determined both by the length of PLVAP-i.e., the long dimension of the pore-and by the chemical properties of amino acid side chains and N-linked glycans on the solvent-accessible faces of PLVAP.


Asunto(s)
Diafragma , Células Endoteliales , Diafragma/metabolismo , Células Endoteliales/metabolismo , Proteínas Portadoras/metabolismo , Endotelio Vascular/metabolismo , Disulfuros/metabolismo , Dicroismo Circular
5.
EMBO J ; 42(6): e112863, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36807601

RESUMEN

The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.


Asunto(s)
Proteínas de Drosophila , Vía de Señalización Hippo , Animales , Humanos , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Neurofibromina 2/metabolismo , Drosophila melanogaster/metabolismo , Mamíferos , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
Biochemistry ; 61(16): 1683-1693, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35895874

RESUMEN

Canonically, MST1/2 functions as a core kinase of the Hippo pathway and noncanonically during both apoptotic signaling and with RASSFs in T-cells. Faithful signal transduction by MST1/2 relies on both appropriate activation and regulated substrate phosphorylation by the activated kinase. Considerable progress has been made in understanding the molecular mechanisms regulating the activation of MST1/2 and identifying downstream signaling events. Here, we investigated the ability of MST2 to phosphorylate a peptide substrate and how that activity is regulated. Using a steady-state kinetic system, we parse the contribution of different factors to substrate phosphorylation, including the domains of MST2, phosphorylation, caspase cleavage, and complex formation. We found that in the unphosphorylated state, the SARAH domain stabilizes interactions with a peptide substrate and promotes turnover. Phosphorylation drives the activity of MST2, and once activated, MST2 is not further regulated by complex formation with other Hippo pathway components (SAV1, MOB1A, and RASSF5). We also show that the phosphorylated, caspase-cleaved MST2 is as active as the full-length one, suggesting that caspase-stimulated activity arises through noncatalytic mechanisms. The kinetic analysis presented here establishes a framework for interpreting how signaling events and post-translational modifications contribute to the signaling of MST2 in vivo.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Caspasas/metabolismo , Cinética , Mamíferos/metabolismo , Fosforilación
7.
J Biol Chem ; 297(6): 101385, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34748729

RESUMEN

The nitroreductase superfamily of enzymes encompasses many flavin mononucleotide (FMN)-dependent catalysts promoting a wide range of reactions. All share a common core consisting of an FMN-binding domain, and individual subgroups additionally contain one to three sequence extensions radiating from defined positions within this core to support their unique catalytic properties. To identify the minimum structure required for activity in the iodotyrosine deiodinase subgroup of this superfamily, attention was directed to a representative from the thermophilic organism Thermotoga neapolitana (TnIYD). This representative was selected based on its status as an outlier of the subgroup arising from its deficiency in certain standard motifs evident in all homologues from mesophiles. We found that TnIYD lacked a typical N-terminal sequence and one of its two characteristic sequence extensions, neither of which was found to be necessary for activity. We also show that TnIYD efficiently promotes dehalogenation of iodo-, bromo-, and chlorotyrosine, analogous to related deiodinases (IYDs) from humans and other mesophiles. In addition, 2-iodophenol is a weak substrate for TnIYD as it was for all other IYDs characterized to date. Consistent with enzymes from thermophilic organisms, we observed that TnIYD adopts a compact fold and low surface area compared with IYDs from mesophilic organisms. The insights gained from our investigations on TnIYD demonstrate the advantages of focusing on sequences that diverge from conventional standards to uncover the minimum essentials for activity. We conclude that TnIYD now represents a superior starting structure for future efforts to engineer a stable dehalogenase targeting halophenols of environmental concern.


Asunto(s)
Proteínas Bacterianas/química , Yoduro Peroxidasa/química , Modelos Moleculares , Pliegue de Proteína , Thermotoga neapolitana/enzimología , Humanos , Dominios Proteicos , Relación Estructura-Actividad , Especificidad por Sustrato
8.
J Biol Chem ; 295(47): 16166-16179, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32994222

RESUMEN

The Hippo pathway plays an important role in developmental biology, mediating organ size by controlling cell proliferation through the activity of a core kinase cassette. Multiple upstream events activate the pathway, but how each controls this core kinase cassette is not fully understood. Activation of the core kinase cassette begins with phosphorylation of the kinase MST1/2 (also known as STK3/4). Here, using a combination of in vitro biochemistry and cell-based assays, including chemically induced dimerization and single-molecule pulldown, we revealed that increasing the proximity of adjacent kinase domains, rather than formation of a specific protein assembly, is sufficient to trigger autophosphorylation. We validate this mechanism in cells and demonstrate that multiple events associated with the active pathway, including SARAH domain-mediated homodimerization, membrane recruitment, and complex formation with the effector protein SAV1, each increase the kinase domain proximity and autophosphorylation of MST2. Together, our results reveal that multiple and distinct upstream signals each utilize the same common molecular mechanism to stimulate MST2 autophosphorylation. This mechanism is likely conserved among MST2 homologs. Our work also highlights potential differences in Hippo signal propagation between each activating event owing to differences in the dynamics and regulation of each protein ensemble that triggers MST2 autophosphorylation and possible redundancy in activation.


Asunto(s)
Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Activación Enzimática , Células HEK293 , Vía de Señalización Hippo , Humanos , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasa 3 , Transducción de Señal
9.
J Biol Chem ; 295(18): 6202-6213, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213597

RESUMEN

Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain-mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain-mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain-mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain-mediated complex formation and provide mechanistic insights into how SARAH domain-mediated interactions influence Hippo pathway activity.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Modelos Moleculares , Dominios Proteicos
10.
J Biol Chem ; 293(15): 5532-5543, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29519817

RESUMEN

The Hippo pathway controls cell proliferation and differentiation through the precisely tuned activity of a core kinase cassette. The activity of Hippo kinase is modulated by interactions between its C-terminal coiled-coil, termed the SARAH domain, and the SARAH domains of either dRassF or Salvador. Here, we wanted to understand the molecular basis of SARAH domain-mediated interactions and their influence on Hippo kinase activity. We focused on Salvador, a positive effector of Hippo activity and the least well-characterized SARAH domain-containing protein. We determined the crystal structure of a complex between Salvador and Hippo SARAH domains from Drosophila This structure provided insight into the organization of the Salvador SARAH domain including a folded N-terminal extension that expands the binding interface with Hippo SARAH domain. We also found that this extension improves the solubility of the Salvador SARAH domain, enhances binding to Hippo, and is unique to Salvador. We therefore suggest expanding the definition of the Salvador SARAH domain to include this extended region. The heterodimeric assembly observed in the crystal was confirmed by cross-linked MS and provided a structural basis for the mutually exclusive interactions of Hippo with either dRassF or Salvador. Of note, Salvador influenced the kinase activity of Mst2, the mammalian Hippo homolog. In co-transfected HEK293T cells, human Salvador increased the levels of Mst2 autophosphorylation and Mst2-mediated phosphorylation of select substrates, whereas Salvador SARAH domain inhibited Mst2 autophosphorylation in vitro These results suggest Salvador enhances the effects of Hippo kinase activity at multiple points in the Hippo pathway.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Drosophila , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosforilación/genética , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Serina-Treonina Quinasa 3
11.
ACS Chem Biol ; 12(3): 601-610, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28150487

RESUMEN

During development, the Hippo pathway regulates the balance between cell proliferation and apoptosis to control organ size. Appropriate Hippo signaling is associated with stem cell maintenance, while inappropriate signaling can result in tumorigenesis and cancer. Cellular and genetic investigations have identified core components and determined that complex formation and protein phosphorylation are crucial regulatory events. The recent spate of high-resolution structures of Hippo pathway components have begun to reveal the molecular mechanisms controlling these events, including the molecular determinates of complex formation between YAP and TEAD, the role of phosphorylation in controlling complex formation by Mob, and the conformational changes accompanying Mst1/2 kinase domain activation. We will review these advances and revisit previous structures to provide a comprehensive overview of the structural changes associated with the regulation of this pathway as well as discuss areas that could benefit from further mechanistic studies.


Asunto(s)
Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas de Drosophila/química , Péptidos y Proteínas de Señalización Intracelular/química , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química
12.
Biochemistry ; 56(8): 1130-1139, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28157283

RESUMEN

The minimal requirements for substrate recognition and turnover by iodotyrosine deiodinase were examined to learn the basis for its catalytic specificity. This enzyme is crucial for iodide homeostasis and the generation of thyroid hormone in chordates. 2-Iodophenol binds only very weakly to the human enzyme and is dehalogenated with a kcat/Km that is more than 4 orders of magnitude lower than that for iodotyrosine. This discrimination likely protects against a futile cycle of iodinating and deiodinating precursors of thyroid hormone biosynthesis. Surprisingly, a very similar catalytic selectivity was expressed by a bacterial homologue from Haliscomenobacter hydrossis. In this example, discrimination was not based on affinity since 4-cyano-2-iodophenol bound to the bacterial deiodinase with a Kd lower than that of iodotyrosine and yet was not detectably deiodinated. Other phenols including 2-iodophenol were deiodinated but only very inefficiently. Crystal structures of the bacterial enzyme with and without bound iodotyrosine are nearly superimposable and quite similar to the corresponding structures of the human enzyme. Likewise, the bacterial enzyme is activated for single electron transfer after binding to the substrate analogue fluorotyrosine as previously observed with the human enzyme. A cocrystal structure of bacterial deiodinase and 2-iodophenol indicates that this ligand stacks on the active site flavin mononucleotide (FMN) in a orientation analogous to that of bound iodotyrosine. However, 2-iodophenol association is not sufficient to activate the FMN chemistry required for catalysis, and thus the bacterial enzyme appears to share a similar specificity for halotyrosines even though their physiological roles are likely very different from those in humans.


Asunto(s)
Dominio Catalítico , Halogenación , Yoduro Peroxidasa/química , Yoduro Peroxidasa/metabolismo , Bacteroidetes/enzimología , Mononucleótido de Flavina/metabolismo , Humanos , Modelos Moleculares , Oxidación-Reducción
13.
Structure ; 23(11): 2055-65, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26439765

RESUMEN

Linear repeat proteins often have high structural similarity and low (∼25%) pairwise sequence identities (PSI) among modules. We identified a unique P. anserina (Pa) sequence with tetratricopeptide repeat (TPR) homology, which contains longer (42 residue) repeats (42PRs) with an average PSI >91%. We determined the crystal structure of five tandem Pa 42PRs to 1.6 Å, and examined the stability and solution properties of constructs containing three to six Pa 42PRs. Compared with 34-residue TPRs (34PRs), Pa 42PRs have a one-turn extension of each helix, and bury more surface area. Unfolding transitions shift to higher denaturant concentration and become sharper as repeats are added. Fitted Ising models show Pa 42PRs to be more cooperative than consensus 34PRs, with increased magnitudes of intrinsic and interfacial free energies. These results demonstrate the tolerance of the TPR motif to length variation, and provide a basis to understand the effects of helix length on intrinsic/interfacial stability.


Asunto(s)
Secuencia Conservada , Proteínas Fúngicas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cinesinas/química , Datos de Secuencia Molecular , Podospora/química , Estructura Terciaria de Proteína
15.
J Clin Endocrinol Metab ; 100(7): E1022-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25927242

RESUMEN

BACKGROUND: 46,XY disorders of sex development (DSD) comprise a heterogeneous group of congenital conditions. Mutations in a variety of genes can affect gonadal development or androgen biosynthesis/action and thereby influence the development of the internal and external genital organs. OBJECTIVE: The objective of the study was to identify the genetic cause in two 46,XY sisters of a consanguineous family with DSD and gonadal tumor formation. METHODS: We used a next-generation sequencing approach by exome sequencing. Electrophysiological and high-resolution ultrasound examination of peripheral nerves as well as histopathological examination of the gonads were performed. RESULTS: We identified a novel homozygous R124Q mutation in the desert hedgehog gene (DHH), which alters a conserved residue among the three mammalian Hedgehog ligands sonic hedgehog, Indian hedgehog, and desert hedgehog. No other relevant mutations in DSD-related genes were encountered. The gonads of one patient showed partial gonadal dysgenesis with loss of Leydig cells in tubular areas with seminoma in situ and a hyperplasia of Leydig cell-like cells expressing CYP17A1 in more dysgenetic parts of the gonad. In addition, both patients suffer from a polyneuropathy. High-resolution ultrasound revealed a structural change of peripheral nerve structure that fits well to a minifascicle formation of peripheral nerves. CONCLUSION: Mutations in DHH play a role in 46,XY gonadal dysgenesis and are associated with seminoma formation and a neuropathy with minifascicle formation. Gonadal dysgenesis in these cases may be due to impairment of Sertoli cell-Leydig cell interaction during gonadal development.


Asunto(s)
Disgenesia Gonadal 46 XY/genética , Proteínas Hedgehog/genética , Homocigoto , Mutación , Adolescente , Adulto , Secuencia de Bases , Análisis Mutacional de ADN/métodos , Exoma , Femenino , Disgenesia Gonadal 46 XY/diagnóstico por imagen , Disgenesia Gonadal 46 XY/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Seminoma/genética , Seminoma/patología , Hermanos , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Ultrasonografía
16.
Proc Natl Acad Sci U S A ; 111(47): 16724-9, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385624

RESUMEN

Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Evolución Molecular Dirigida , Lisina/metabolismo , Cinética
17.
Elife ; 32014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25255214

RESUMEN

The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Células HEK293 , Humanos , Ligandos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/genética , Receptor de Insulina/química , Receptor de Insulina/metabolismo
18.
J Biol Chem ; 289(45): 31361-72, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25248746

RESUMEN

S-Adenosylhomocysteine hydrolase (SAHH) is an NAD(+)-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys(401) and Lys(408) but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys(401) and Lys(408) and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD(+) binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Lisina/metabolismo , Acetilación , Secuencia de Aminoácidos , Catálisis , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , NAD/metabolismo , Plásmidos/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
19.
Methods Enzymol ; 541: 27-34, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24674060

RESUMEN

Antibodies will be immobilized on a cyanogen bromide-activated Sepharose for subsequent use in pull-down assays or immunoaffinity purification.


Asunto(s)
Anticuerpos Inmovilizados/química , Anticuerpos Monoclonales/química , Bromuro de Cianógeno/química , Sefarosa/química , Cromatografía de Afinidad/instrumentación , Resinas Sintéticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...