Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015302

RESUMEN

Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS. Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders. Importantly, we found that enhanced production of the first KP metabolite, kynurenine (KYN), correlated with symptom severity, highlighting the relationship between inflammation, KP dysregulation, and ME/CFS symptomology. Other significant changes in the KP included lower levels of the downstream KP metabolites 3-HK, 3-HAA, QUIN, and PIC that could negatively impact cellular energetics. We also rationalized KP dysregulation to changes in the expression of inflammatory cytokines and, for the first time, assessed levels of the iron (Fe)-regulating hormone hepcidin that is also inflammation-responsive. Levels of hepcidin in ME/CFS decreased nearly by half, which might reflect systemic low Fe levels or possibly ongoing hypoxia. We next performed a proteomics screen to survey for other significant differences in protein expression in ME/CFS. Interestingly, out of the seven most significantly modulated proteins in ME/CFS patient plasma, 5 proteins have roles in maintaining gut health, which considering the new appreciation of how gut microbiome and health modulates systemic KP could highlight a new explanation of symptomology in ME/CFS patients and potential new prognostic biomarker/s and/or treatment avenues.

2.
Cell Mol Life Sci ; 79(8): 412, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821534

RESUMEN

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and debilitating disease with a substantial social and economic impact on individuals and their community. Despite its importance and deteriorating impact, progresses in diagnosis and treatment of ME/CFS is limited. This is due to the unclear pathophysiology of the disease and consequently lack of prognostic biomarkers. To investigate pathophysiology of ME/CFS, several potential pathologic hallmarks have been investigated; however, these studies have failed to report a consistent result. These failures in introducing the underlying reason for ME/CFS have stimulated considering other possible contributing mechanisms such as tryptophan (TRP) metabolism and in particular kynurenine pathway (KP). KP plays a central role in cellular energy production through the production of nicotinamide adenine dinucleotide (NADH). In addition, this pathway has been shown to mediate immune response and neuroinflammation through its metabolites. This review, we will discuss the pathology and management of ME/CFS and provide evidence pertaining KP abnormalities and symptoms that are classic characteristics of ME/CFS. Targeting the KP regulation may provide innovative approaches to the management of ME/CFS.


Asunto(s)
Síndrome de Fatiga Crónica , Síndrome de Fatiga Crónica/diagnóstico , Síndrome de Fatiga Crónica/terapia , Humanos , Quinurenina , NAD
3.
Aging Dis ; 13(3): 698-711, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35656104

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious, complex, and highly debilitating long-term illness. People with ME/CFS are typically unable to carry out their routine activities. Key hallmarks of the disease are neurological and gastrointestinal impairments accompanied by pervasive malaise that is exacerbated after physical and/or mental activity. Currently, there is no validated cure of biomarker signature for this illness. Impaired tryptophan (TRYP) metabolism is thought to play significant role in the pathobiology of ME/CFS. TRYP is an important precursor for serotonin and the essential pyridine nucleotide nicotinamide adenine dinucleotide (NAD+). TRYP has been associated with the development of some parts of the brain responsible for behavioural functions. The main catabolic route for TRYP is the kynurenine pathway (KP). The KP produces NAD+ and several neuroactive metabolites with neuroprotective (i.e., kynurenic acid (KYNA)) and neurotoxic (i.e., quinolinic acid (QUIN)) activities. Hyperactivation of the KP, whether compensatory or a driving mechanism of degeneration can limit the availability of NAD+ and exacerbate the symptoms of ME/CFS. This review discusses the potential association of altered KP metabolism in ME/CFS. The review also evaluates the role of the patient's gut microbiota on TRYP availability and KP activation. We propose that strategies aimed at raising the levels of NAD+ (e.g., using nicotinamide mononucleotide and nicotinamide riboside) may be a promising intervention to overcome symptoms of fatigue and to improve the quality of life in patients with ME/CFS. Future clinical trials should further assess the potential benefits of NAD+ supplements for reducing some of the clinical features of ME/CFS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...