Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(11): E624-9, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371561

RESUMEN

Records of micrometeorite collisions at down to submicron scales were discovered on dust grains recovered from near-Earth asteroid 25143 (Itokawa). Because the grains were sampled from very near the surface of the asteroid, by the Hayabusa spacecraft, their surfaces reflect the low-gravity space environment influencing the physical nature of the asteroid exterior. The space environment was examined by description of grain surfaces and asteroidal scenes were reconstructed. Chemical and O isotope compositions of five lithic grains, with diameters near 50 µm, indicate that the uppermost layer of the rubble-pile-textured Itokawa is largely composed of equilibrated LL-ordinary-chondrite-like material with superimposed effects of collisions. The surfaces of the grains are dominated by fractures, and the fracture planes contain not only sub-µm-sized craters but also a large number of sub-µm- to several-µm-sized adhered particles, some of the latter composed of glass. The size distribution and chemical compositions of the adhered particles, together with the occurrences of the sub-µm-sized craters, suggest formation by hypervelocity collisions of micrometeorites at down to nm scales, a process expected in the physically hostile environment at an asteroid's surface. We describe impact-related phenomena, ranging in scale from 10(-9) to 10(4) meters, demonstrating the central role played by impact processes in the long-term evolution of planetary bodies. Impact appears to be an important process shaping the exteriors of not only large planetary bodies, such as the moon, but also low-gravity bodies such as asteroids.

2.
Science ; 333(6046): 1113-6, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21868667

RESUMEN

The Hayabusa spacecraft successfully recovered dust particles from the surface of near-Earth asteroid 25143 Itokawa. Synchrotron-radiation x-ray diffraction and transmission and scanning electron microscope analyses indicate that the mineralogy and mineral chemistry of the Itokawa dust particles are identical to those of thermally metamorphosed LL chondrites, consistent with spectroscopic observations made from Earth and by the Hayabusa spacecraft. Our results directly demonstrate that ordinary chondrites, the most abundant meteorites found on Earth, come from S-type asteroids. Mineral chemistry indicates that the majority of regolith surface particles suffered long-term thermal annealing and subsequent impact shock, suggesting that Itokawa is an asteroid made of reassembled pieces of the interior portions of a once larger asteroid.

3.
Science ; 333(6046): 1116-9, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21868668

RESUMEN

Meteorite studies suggest that each solar system object has a unique oxygen isotopic composition. Chondrites, the most primitive of meteorites, have been believed to be derived from asteroids, but oxygen isotopic compositions of asteroids themselves have not been established. We measured, using secondary ion mass spectrometry, oxygen isotopic compositions of rock particles from asteroid 25143 Itokawa returned by the Hayabusa spacecraft. Compositions of the particles are depleted in (16)O relative to terrestrial materials and indicate that Itokawa, an S-type asteroid, is one of the sources of the LL or L group of equilibrated ordinary chondrites. This is a direct oxygen-isotope link between chondrites and their parent asteroid.

4.
Science ; 333(6046): 1125-8, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21868671

RESUMEN

Regolith particles on the asteroid Itokawa were recovered by the Hayabusa mission. Their three-dimensional (3D) structure and other properties, revealed by x-ray microtomography, provide information on regolith formation. Modal abundances of minerals, bulk density (3.4 grams per cubic centimeter), and the 3D textures indicate that the particles represent a mixture of equilibrated and less-equilibrated LL chondrite materials. Evidence for melting was not seen on any of the particles. Some particles have rounded edges. Overall, the particles' size and shape are different from those seen in particles from the lunar regolith. These features suggest that meteoroid impacts on the asteroid surface primarily form much of the regolith particle, and that seismic-induced grain motion in the smooth terrain abrades them over time.

5.
Science ; 333(6046): 1128-31, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21868672

RESUMEN

Noble gas isotopes were measured in three rocky grains from asteroid Itokawa to elucidate a history of irradiation from cosmic rays and solar wind on its surface. Large amounts of solar helium (He), neon (Ne), and argon (Ar) trapped in various depths in the grains were observed, which can be explained by multiple implantations of solar wind particles into the grains, combined with preferential He loss caused by frictional wear of space-weathered rims on the grains. Short residence time of less than 8 million years was implied for the grains by an estimate on cosmic-ray-produced (21)Ne. Our results suggest that Itokawa is continuously losing its surface materials into space at a rate of tens of centimeters per million years. The lifetime of Itokawa should be much shorter than the age of our solar system.

6.
Science ; 312(5778): 1347-9, 2006 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16741112

RESUMEN

The locations of the pole and rotation axis of asteroid 25143 Itokawa were derived from Asteroid Multiband Imaging Camera data on the Hayabusa spacecraft. The retrograde pole orientation had a right ascension of 90.53 degrees and a declination of -66.30 degrees (52000 equinox) or equivalently 128.5 degrees and -89.66 degrees in ecliptic coordinates with a 3.9 degrees margin of error. The surface area is 0.393 square kilometers, the volume is 0.018378 cubic kilometers with a 5% margin of error, and the three axis lengths are 535 meters by 294 meters by 209 meters. The global Itokawa revealed a boomerang-shaped appearance composed of two distinct parts with partly faceted regions and a constricted ring structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...