Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
JBMR Plus ; 8(6): ziae050, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699440

RESUMEN

Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.

2.
Mov Disord Clin Pract ; 11(6): 720-727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605589

RESUMEN

BACKGROUND: MAPT is a causative gene in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), a hereditary degenerative disease with various clinical manifestations, including progressive supranuclear palsy, corticobasal syndrome, Parkinson's disease, and frontotemporal dementia. OBJECTIVES: To analyze genetically, biochemically, and pathologically multiple members of two families who exhibited various phenotypes of the disease. METHODS: Genetic analysis included linkage analysis, homozygosity haplotyping, and exome sequencing. We conducted tau protein microtubule polymerization assay, heparin-induced tau aggregation, and western blotting with brain lysate from an autopsy case. We also evaluated abnormal tau aggregation by using anti-tau antibody and PM-PBB3. RESULTS: We identified a variant, c.896_897insACA, p.K298_H299insQ, in the MAPT gene of affected patients. Similar to previous reports, most patients presented with atypical parkinsonism. Biochemical analysis revealed that the mutant tau protein had a reduced ability to polymerize microtubules and formed abnormal fibrous aggregates. Pathological study revealed frontotemporal lobe atrophy, midbrain atrophy, depigmentation of the substantia nigra, and four-repeat tau-positive inclusions in the hippocampus, brainstem, and spinal cord neurons. The inclusion bodies also stained positively with PM-PBB3. CONCLUSIONS: This study confirmed that the insACA mutation caused FTDP-17. The affected patients showed symptoms resembling Parkinson's disease initially and symptoms of progressive supranuclear palsy later. Despite the initial clinical diagnosis of frontotemporal dementia in the autopsy case, the spread of lesions could explain the process of progressive supranuclear palsy. The study of more cases in the future will help clarify the common pathogenesis of MAPT mutations or specific pathogeneses of each mutation.


Asunto(s)
Demencia Frontotemporal , Mutación , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Linaje , Anciano , Encéfalo/patología , Encéfalo/metabolismo , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Cromosomas Humanos Par 17/genética , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/metabolismo
3.
Brain Commun ; 5(6): fcad281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953842

RESUMEN

Pontine autosomal dominant microangiopathy and leukoencephalopathy is one of hereditary cerebral small vessel diseases caused by pathogenic variants in COL4A1 3'UTR and characterized by multiple small infarctions in the pons. We attempted to establish radiological features of this disease. We performed whole exome sequencing and Sanger sequencing in one family with undetermined familial small vessel disease, followed by clinicoradiological assessment and a postmortem examination. We subsequently investigated clinicoradiological features of patients in a juvenile cerebral vessel disease cohort and searched for radiological features similar to those found in the aforementioned family. Sanger sequencing was performed in selected cohort patients in order to detect variants in the same gene. An identical variant in the COL4A1 3'UTR was observed in two patients with familial small vessel disease and the two selected patients, thereby confirming the pontine autosomal dominant microangiopathy and leukoencephalopathy diagnosis. Furthermore, postmortem examination showed that the distribution of thickened media tunica and hyalinized vessels was different from that in lacunar infarctions. The appearance of characteristic multiple oval small infarctions in the pons, which resemble raisin bread, enable us to make a diagnosis of pontine autosomal dominant microangiopathy and leukoencephalopathy. This feature, for which we coined the name 'raisin bread sign', was also correlated to the pathological changes.

5.
PLoS One ; 18(6): e0287545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352136

RESUMEN

BACKGROUND: Optineurin (OPTN) is associated with several human diseases, including amyotrophic lateral sclerosis (ALS), and is involved in various cellular processes, including autophagy. Optineurin regulates the expression of interferon beta (IFNß), which plays a central role in the innate immune response to viral infection. However, the role of optineurin in response to viral infection has not been fully clarified. It is known that optineurin-deficient cells produce more IFNß than wild-type cells following viral infection. In this study, we investigate the reasons for, and effects of, IFNß overproduction during optineurin deficiency both in vitro and in vivo. METHODS: To investigate the mechanism of IFNß overproduction, viral nucleic acids in infected cells were quantified by RT-qPCR and the autophagic activity of optineurin-deficient cells was determined to understand the basis for the intracellular accumulation of viral nucleic acids. Moreover, viral infection experiments using optineurin-disrupted (Optn-KO) animals were performed with several viruses. RESULTS: IFNß overproduction following viral infection was observed not only in several types of optineurin-deficient cell lines but also in Optn-KO mice and human ALS patient cells carrying mutations in OPTN. IFNß overproduction in Optn-KO cells was revealed to be caused by excessive accumulation of viral nucleic acids, which was a consequence of reduced autophagic activity caused by the loss of optineurin. Additionally, IFNß overproduction in Optn-KO mice suppressed viral proliferation, resulting in increased mouse survival following viral challenge. CONCLUSION: Our findings indicate that the combination of optineurin deficiency and viral infection leads to IFNß overproduction in vitro and in vivo. The effects of optineurin deficiency are elicited by viral infection, therefore, viral infection may be implicated in the development of optineurin-related diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Ciclo Celular , Proteínas de Transporte de Membrana , Virosis , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Autofagia/genética , Proteínas de Ciclo Celular/genética , Inmunidad Innata , Interferón beta/genética , Factor de Transcripción TFIIIA/genética , Factor de Transcripción TFIIIA/metabolismo , Proteínas de Transporte de Membrana/genética , Ratones Noqueados
6.
Am J Hum Genet ; 110(7): 1086-1097, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37339631

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of motor neurons. Although repeat expansion in C9orf72 is its most common cause, the pathogenesis of ALS isn't fully clear. In this study, we show that repeat expansion in LRP12, a causative variant of oculopharyngodistal myopathy type 1 (OPDM1), is a cause of ALS. We identify CGG repeat expansion in LRP12 in five families and two simplex individuals. These ALS individuals (LRP12-ALS) have 61-100 repeats, which contrasts with most OPDM individuals with repeat expansion in LRP12 (LRP12-OPDM), who have 100-200 repeats. Phosphorylated TDP-43 is present in the cytoplasm of iPS cell-derived motor neurons (iPSMNs) in LRP12-ALS, a finding that reproduces the pathological hallmark of ALS. RNA foci are more prominent in muscle and iPSMNs in LRP12-ALS than in LRP12-OPDM. Muscleblind-like 1 aggregates are observed only in OPDM muscle. In conclusion, CGG repeat expansions in LRP12 cause ALS and OPDM, depending on the length of the repeat. Our findings provide insight into the repeat length-dependent switching of phenotypes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Distrofias Musculares , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Distrofias Musculares/genética , Enfermedades Neurodegenerativas/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética
7.
Acta Neuropathol Commun ; 10(1): 177, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476347

RESUMEN

Spinocerebellar ataxia (SCA) type 17-digenic TBP/STUB1 disease (SCA17-DI) has been recently segregated from SCA17, caused by digenic inheritance of two gene mutations - intermediate polyglutamine-encoding CAG/CAA repeat expansions (polyQ) in TBP (TBP41 - 49) and STUB1 heterozygosity - the former being associated with SCA17, and the latter with SCA48 and SCAR16 (autosomal recessive). In SCA17, most patients carry intermediate TBP41 - 49 alleles but show incomplete penetrance, and the missing heritability can be explained by a new entity whereby TBP41 - 49 requires the STUB1 variant to be symptomatic. The STUB1 gene encodes the chaperone-associated E3 ubiquitin ligase (CHIP) involved in ubiquitin-mediated proteasomal control of protein homeostasis. However, reports of the neuropathology are limited and role of STUB1 mutations in SCA17-DI remain unknown. Here we report the clinicopathologic features of identical twin siblings, one of whom was autopsied and was found to carry an intermediate allele (41 and 38 CAG/CAA repeats) in TBP and a heterozygous missense mutation in STUB1 (p.P243L). These patients developed autosomal recessive Huntington's disease-like symptoms. Brain MRI showed diffuse atrophy of the cerebellum and T2WI revealed hyperintense lesions in the basal ganglia and periventricular deep white matter. The brain histopathology of the patient shared features characteristic of SCA17, such as degeneration of the cerebellar cortex and caudate nucleus, and presence of 1C2-positive neurons. Here we show that mutant CHIP fails to generate the polyubiquitin chain due to disrupted folding of the entire U box domain, thereby affecting the E3 activity of CHIP. When encountering patients with cerebellar ataxia, especially those with Huntington's disease-like symptoms, genetic testing for STUB1 as well as TBP should be conducted for diagnosis of SCA17-DI, even in cases of sporadic or autosomal recessive inheritance.


Asunto(s)
Enfermedad de Huntington , Ataxias Espinocerebelosas , Humanos , Neuropatología , Autopsia , Ataxias Espinocerebelosas/genética , Ubiquitina-Proteína Ligasas/genética
9.
J Hum Genet ; 67(10): 595-599, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35760954

RESUMEN

Spinocerebellar ataxia type 14 (SCA14) is an autosomal dominant SCA caused by variants of the PRKCG encoding protein kinase C gamma (PKCγ). Although the toxic gain-of-function mechanism is the main cause of SCA14, its molecular pathophysiology remains unclear. To elucidate the molecular pathogenesis of SCA14, we analyzed two families with the variants in PRKCG. Clinical symptoms and neurological findings of two Japanese families were evaluated by neurologists. Exome sequencing was performed using the BGI platform. GFP-tagged PRKCGs harboring the identified variants were transfected into the HeLa cells, and aggregation of PKCγ was analyzed using confocal laser microscopy. Solubility of PKCγ was evaluated by assessing the proportion of insoluble fraction present in1% Triton-X. Patients in family 1 presented with only cerebellar atrophy without ataxia; however, patients in family 2 exhibited cerebellar ataxia, dystonia, and more severe cerebellar atrophy than those in family 1. Exome sequencing identified two novel missense variants of PRKCG:c.171 G > C,p.W57C (family 1), and c.400 T > C,p.C134R (family 2). Both the mutant PKCγ aggregated in the cytoplasm. Although the solubility of PKCγ of the C134R variant was lower than that of the wild-type, PKCγ of W57C retained its solubility. In conclusion, we identified two novel variants of PRKCG. The difference in severity between the two families may be due to the difference in solubility changes observed between the two variants. Decreased solubility of the PKCγ may play an important role in the pathogenesis of SCA14.


Asunto(s)
Ataxia Cerebelosa , Atrofia , Células HeLa , Humanos , Proteína Quinasa C , Ataxias Espinocerebelosas
10.
JAMA Neurol ; 79(7): 693-701, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604654

RESUMEN

Importance: Degeneration of neuromuscular junctions and axons is considered an important aspect of the pathomechanism of amyotrophic lateral sclerosis (ALS). However, a mechanism including the role of transactive response DNA-binding protein 43 (TDP-43) in axons has not been pathologically clarified. Objective: To identify and characterize the histopathology of peripheral axons in the skeletal muscle of patients with ALS. Design, Setting, and Participants: This study comprised 2 parts: a postmortem case-control study and a retrospective population-based cohort study with a minimum of 1 year of follow-up. Patients in the cohort study were enrolled from January 1, 2004, to September 30, 2019. The postmortem study included patients with sporadic ALS (SALS) with TDP-43 pathology and control patients with non-ALS disease. The cohort study enrolled patients without a family history of ALS or other neuromuscular disease and those not diagnosed with a muscle disease at biopsy. Patients were excluded if their clinical records were not screened after biopsy, if they were diagnosed with a muscular disease, and if they were harboring known causative genes of ALS. Data were collected between September 2019 and June 2021 and analyzed in June 2021. Exposures: Muscle biopsy or postmortem muscle tissue examination. Main Outcomes and Measures: Clinical information and muscle pathological characteristics. Results: A total of 10 patients with autopsy-confirmed SALS (mean [SD] age at death, 76.1 [8.5] years; 8 men [80%]) exhibited axonal phosphorylated TDP-43 (pTDP-43)-positive accumulations in intramuscular nerve bundles; the 12 control patients without ALS did not. Among the 114 patients in the cohort study (mean [SD] age, 62.3 [16.1] years; 76 men [67%]), 71 patients (62.3%) exhibited intramuscular nerve bundles; 43 (37.7%) did not. Among those who exhibited pTDP-43-positive intramuscular nerve bundles, 33 patients (22 men [66.7%]; mean [SD] age, 65.2 [15.6] years) were later diagnosed with ALS. The other 38 patients (26 men [68.4%]; mean [SD] age, 59.3 [18.0] years) showed no pTDP-43-positive bundles and did not develop ALS. Among those without evident nerve bundles (28 men [65.1%]; mean [SD] age, 61.3 [15.3] years), 3 were later diagnosed with ALS. Among patients with ALS in the biopsy cohort, 9 with pTDP-43-positive bundles showed only lower motor neuron symptoms at biopsy. Conclusions and Relevance: Results of this dual case-control and retrospective cohort study suggest that axonal pTDP-43 accumulations may be characteristic for patients with ALS. As such findings precede clinical fulfillment of the Gold Coast criteria, TDP-43 in nerve bundles may be a novel diagnostic biomarker for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Anciano , Esclerosis Amiotrófica Lateral/genética , Estudios de Casos y Controles , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
11.
Differentiation ; 123: 1-8, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34844057

RESUMEN

Mutations in optineurin (OPTN) have been identified in a small proportion of sporadic and familial amyotrophic lateral sclerosis (ALS) cases. Recent evidences suggest that OPTN would be involved in not only the pathophysiological mechanisms of motor neuron death of ALS but also myofiber degeneration of sporadic inclusion body myositis. However, the detailed role of OPTN in muscle remains unclear. Initially, we showed that OPTN expression levels were significantly increased in the denervated muscles of mice, suggesting that OPTN may be involved in muscle homeostasis. To reveal the molecular role of OPTN in muscle atrophy, we used cultured C2C12 myotubes treated with tumor necrosis factor-like inducer of apoptosis (TWEAK) as an in vitro model of muscle atrophy. Our data showed that OPTN had no effect on the process of muscle atrophy in this model. On the other hand, we found that myogenic differentiation was affected by OPTN. Immunoblotting analysis showed that OPTN protein levels gradually decreased during C2C12 differentiation. Furthermore, OPTN knockdown inhibited C2C12 differentiation, accompanied by reduction of mRNA and protein expression levels of myogenin and MyoD. These findings suggested that OPTN may have a novel function in muscle homeostasis and play a role in the pathogenesis of neuromuscular diseases.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Diferenciación Celular/genética , Ratones , Atrofia Muscular/patología , Proteína MioD/genética , Mioblastos/metabolismo , Miogenina/genética , Factor de Transcripción TFIIIA/genética , Factor de Transcripción TFIIIA/metabolismo
13.
BMC Neurol ; 21(1): 396, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641814

RESUMEN

BACKGROUND: Both fragile X-associated tremor/ataxia syndrome (FXTAS) and late-onset neuronal intranuclear inclusion disease (NIID) show CGG/GGC trinucleotide repeat expansions. Differentiating these diseases are difficult because of the similarity in their clinical and radiological features. It is unclear that skin biopsy can distinguish NIID from FXTAS. We performed a skin biopsy in an FXTAS case with cognitive dysfunction and peripheral neuropathy without tremor, which was initially suspected to be NIID. CASE PRESENTATION: The patient underwent neurological assessment and examinations, including laboratory tests, electrophysiologic test, imaging, skin biopsy, and genetic test. A brain MRI showed hyperintensity lesions along the corticomedullary junction on diffusion-weighted imaging (DWI) in addition to middle cerebellar peduncle sign (MCP sign). We suspected NIID from the clinical picture and the radiological findings, and performed a skin biopsy. The skin biopsy specimen showed ubiquitin- and p62-positive intranuclear inclusions, suggesting NIID. However, a genetic analysis for NIID using repeat-primed polymerase chain reaction (RP-PCR) revealed no expansion detected in the Notch 2 N-terminal like C (NOTCH2NLC) gene. We then performed genetic analysis for FXTAS using RP-PCR, which revealed a repeat CGG/GGC expansion in the FMRP translational regulator 1 (FMR1) gene. The number of repeats was 83. We finally diagnosed the patient with FXTAS rather than NIID. CONCLUSIONS: For the differential diagnosis of FXTAS and NIID, a skin biopsy alone is insufficient; instead, genetic analysis, is essential. Further investigations in additional cases based on genetic analysis are needed to elucidate the clinical and pathological differences between FXTAS and NIID.


Asunto(s)
Cuerpos de Inclusión Intranucleares , Temblor , Ataxia , Biopsia , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Enfermedades Neurodegenerativas
15.
J Radiat Res ; 62(Supplement_1): i107-i113, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33978168

RESUMEN

The Research Institute for Radiation Biology and Medicine (RIRBM) of Hiroshima University has been conducting a cohort study of atomic bomb survivors (ABS). Cohort members include those who were issued an Atomic Bomb Health Handbook from the Hiroshima local government. A series of dosimetry systems for the ABS were developed at RIRBM to evaluate the health effects associated with radiation exposure. The framework used to estimate individual doses in our dosimetry systems for ABS is mainly based on the Dosimetry System 86, and its revisions developed by the Radiation Effect Research Foundation. This article describes the design and computational principles for the dosimetry systems in RIRBM and the history of the revisions, from the first version of the system, ABS93D, to the most recent version, ABS16D. We then provide a perspective for further improvement and application of the dosimetry system.


Asunto(s)
Supervivientes a la Bomba Atómica , Radiobiología , Radiometría , Universidades , Estudios de Cohortes , Relación Dosis-Respuesta en la Radiación , Humanos , Japón
16.
J Hum Genet ; 66(10): 957-964, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33742109

RESUMEN

Parkinson's disease (PD) is caused by a combination of genetic and environmental factors. Notably, genetic risk factors vary according to ethnicity and geographical regions, and few studies have analyzed the frequency of PD causative genes in Japanese patients. Therefore, we performed genetic analyses of Japanese patients with PD. We recruited 221 participants, including 26 patients with familial PD. Genetic risk factors were evaluated by target sequencing and gene dosage analysis. We detected the genetic risk factors in 58 cases (26.2%) and classified patients into three groups to clarify the differences in genetic risk factors by age at onset (AAO). The early-onset group (AAO < 50 years) included 18 cases (44.7%), who tended to have a larger number of genetic risk factors than the later-onset groups. Regarding the AAO for each causative gene, patients with PRKN variants were significantly younger at onset than those bearing LRRK2 variants. LRRK2 variants showed similar frequency in each AAO group. Of note, we identified two novel variants. Patients with early-onset PD have more genetic risk factors than patients with late-onset PD. In Japanese patients with PD, PRKN, and LRRK2 were the major PD-related genes. Particularly, LRRK2 was a common genetic factor in all age groups because of the presence of the Asian-specific variant such as LRRK2 p.G2385R. Accumulation of genetic and clinical data can contribute to the development of treatments for PD.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Adulto , Edad de Inicio , Pueblo Asiatico/genética , Femenino , Pruebas Genéticas , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/patología , Factores de Riesgo
17.
Ann Neurol ; 89(6): 1226-1233, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33565152

RESUMEN

In amyotrophic lateral sclerosis (ALS), early diagnosis is essential for both current and potential treatments. To find a supportive approach for the diagnosis, we constructed an artificial intelligence-based prediction model of ALS using induced pluripotent stem cells (iPSCs). Images of spinal motor neurons derived from healthy control subject and ALS patient iPSCs were analyzed by a convolutional neural network, and the algorithm achieved an area under the curve of 0.97 for classifying healthy control and ALS. This prediction model by deep learning algorithm with iPSC technology could support the diagnosis and may provide proactive treatment of ALS through future prospective research. ANN NEUROL 2021;89:1226-1233.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Aprendizaje Profundo , Diagnóstico Precoz , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Neuropathology ; 41(2): 118-126, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33415820

RESUMEN

We here report an autopsy case of familial amyotrophic lateral sclerosis (ALS) with p.Arg487His mutation in the valosin-containing protein (VCP) gene (VCP), in which upper motor neurons (UMNs) were predominantly involved. Moreover, our patient developed symptoms of frontotemporal dementia later in life and pathologically exhibited numerous phosphorylated transactivation response DNA-binding protein of 43 kDa (p-TDP-43)-positive neuronal cytoplasmic inclusions and short dystrophic neurites with a few lentiform neuronal intranuclear inclusions, sharing the features of frontotemporal lobar degeneration with TDP-43 pathology type A pattern. A review of previous reports of ALS with VCP mutations suggests that our case is unique in terms of its UMN-predominant lesion pattern and distribution of p-TDP-43 pathology. Thus, this case report effectively expands the clinical and pathological phenotype of ALS in patients with a VCP mutation.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Autopsia , Mutación/genética , Proteinopatías TDP-43/metabolismo , Proteína que Contiene Valosina/genética , Autopsia/métodos , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Humanos , Cuerpos de Inclusión Intranucleares/metabolismo , Masculino , Persona de Mediana Edad , Neuronas Motoras/patología , Proteína que Contiene Valosina/metabolismo
20.
J Physiol ; 599(2): 547-569, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33151574

RESUMEN

KEY POINTS: Some ion channels are known to behave as inductors and make up the parallel resonant circuit in the plasma membrane of neurons, which enables neurons to respond to current inputs with a specific frequency (so-called 'resonant properties'). Here, we report that heterologous expression of mouse Kv11 voltage-dependent K+ channels generate resonance and oscillation at depolarized membrane potentials in HEK293 cells; expressions of individual Kv11 subtypes generate resonance and oscillation with different frequency properties. Kv11.3-expressing HEK293 cells exhibited transient conductance changes that opposed the current changes induced by voltage steps; this probably enables Kv11 channels to behave like an inductor. The resonance and oscillation of inferior olivary neurons were impaired at the resting membrane potential in Kv11.3 knockout mice. This study helps to elucidate basic ion channel properties that are crucial for the frequency responses of neurons. ABSTRACT: The plasma membranes of some neurons preferentially respond to current inputs with a specific frequency, and output as large voltage changes. This property is called resonance, and is thought to be mediated by ion channels that show inductor-like behaviour. However, details of the candidate ion channels remain unclear. In this study, we mainly focused on the functional roles of Kv11 potassium (K+ ) channels, encoded by ether-á-go-go-related genes, in resonance in mouse inferior olivary (IO) neurons. We transfected HEK293 cells with long or short splice variants of Kv11.1 (Merg1a and Merg1b) or Kv11.3, and examined membrane properties using whole-cell recording. Transfection with Kv11 channels reproduced resonance at membrane potentials depolarized from the resting state. Frequency ranges of Kv11.3-, Kv11.1(Merg1b)- and Kv11.1(Merg1a)-expressing cells were 2-6 Hz, 2-4 Hz, and 0.6-0.8 Hz, respectively. Responses of Kv11.3 currents to step voltage changes were essentially similar to those of inductor currents in the resistor-inductor-capacitor circuit. Furthermore, Kv11 transfections generated membrane potential oscillations. We also confirmed the contribution of HCN1 channels as a major mediator of resonance at more hyperpolarized potentials by transfection into HEK293 cells. The Kv11 current kinetics and properties of Kv11-dependent resonance suggested that Kv11.3 mediated resonance in IO neurons. This finding was confirmed by the impairment of resonance and oscillation at -30 to -60 mV in Kcnh7 (Kv11.3) knockout mice. These results suggest that Kv11 channels have important roles in inducing frequency-dependent responses in a subtype-dependent manner from resting to depolarized membrane potentials.


Asunto(s)
Éter , Potasio , Animales , Células HEK293 , Humanos , Potenciales de la Membrana , Ratones , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA