Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
DNA Res ; 29(6)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351462

RESUMEN

Homologous chromosomes in the diploid genome are thought to contain equivalent genetic information, but this common concept has not been fully verified in animal genomes with high heterozygosity. Here we report a near-complete, haplotype-phased, genome assembly of the pearl oyster, Pinctada fucata, using hi-fidelity (HiFi) long reads and chromosome conformation capture data. This assembly includes 14 pairs of long scaffolds (>38 Mb) corresponding to chromosomes (2n = 28). The accuracy of the assembly, as measured by an analysis of k-mers, is estimated to be 99.99997%. Moreover, the haplotypes contain 95.2% and 95.9%, respectively, complete and single-copy BUSCO genes, demonstrating the high quality of the assembly. Transposons comprise 53.3% of the assembly and are a major contributor to structural variations. Despite overall collinearity between haplotypes, one of the chromosomal scaffolds contains megabase-scale non-syntenic regions, which necessarily have never been detected and resolved in conventional haplotype-merged assemblies. These regions encode expanded gene families of NACHT, DZIP3/hRUL138-like HEPN, and immunoglobulin domains, multiplying the immunity gene repertoire, which we hypothesize is important for the innate immune capability of pearl oysters. The pearl oyster genome provides insight into remarkable haplotype diversity in animals.


Asunto(s)
Pinctada , Animales , Pinctada/genética , Haplotipos , Genoma , Cromosomas
2.
Sci Adv ; 8(26): eabo4400, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776797

RESUMEN

The phylogenomic approach has largely resolved metazoan phylogeny and improved our knowledge of animal evolution based on morphology, paleontology, and embryology. Nevertheless, the placement of two major lophotrochozoan phyla, Entoprocta (Kamptozoa) and Ectoprocta (Bryozoa), remains highly controversial: Originally considered as a single group named Polyzoa (Bryozoa), they were separated on the basis of morphology. So far, each new study of lophotrochozoan evolution has still consistently proposed different phylogenetic positions for these groups. Here, we reinvestigated the placement of Entoprocta and Ectoprocta using highly complete datasets with rigorous contamination removal. Our results from maximum likelihood, Bayesian, and coalescent analyses strongly support the topology in which Entoprocta and Bryozoa form a distinct clade, placed as a sister group to all other lophotrochozoan clades: Annelida, Mollusca, Brachiopoda, Phoronida, and Nemertea. Our study favors the evolutionary scenario where Entoprocta, Cycliophora, and Bryozoa constitute one of the earliest branches among Lophotrochozoa and thus supports the Polyzoa hypothesis.

3.
G3 (Bethesda) ; 11(11)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34515781

RESUMEN

The kuruma shrimp Marsupenaeus japonicus (order Decapoda, family Penaeidae) is an economically important crustacean that occurs in shallow, warm seas across the Indo-Pacific. Here, using a combination of Illumina and Oxford Nanopore Technologies platforms, we produced a draft genome assembly of M. japonicus (1.70 Gbp; 18,210 scaffolds; scaffold N50 = 234.9 kbp; 34.38% GC, 93.4% BUSCO completeness) and a complete mitochondrial genome sequence (15,969 bp). As with other penaeid shrimp genomes, the M. japonicus genome is extremely rich in simple repeats, which occupies 27.4% of the assembly. A total of 26,381 protein-coding gene models (94.7% BUSCO completeness) were predicted, of which 18,005 genes (68.2%) were assigned functional description by at least one method. We also produced an Illumina-based transcriptome shotgun assembly (40,991 entries; 93.0% BUSCO completeness) and a PacBio Iso-Seq transcriptome assembly (25,415 entries; 67.5% BUSCO completeness). We envision that the M. japonicus genome and transcriptome assemblies will serve as useful resources for the basic research, fisheries management, and breeding programs of M. japonicus.


Asunto(s)
Penaeidae , Animales , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Penaeidae/genética , Análisis de Secuencia de ADN , Transcriptoma
5.
Genome Biol Evol ; 13(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33822040

RESUMEN

Chromosomal rearrangements can reduce fitness of heterozygotes and can thereby prevent gene flow. Therefore, such rearrangements can play a role in local adaptation and speciation. In particular, inversions are considered to be a major potential cause for chromosomal speciation. There are two closely related, partially sympatric lineages of ascidians in the genus Ciona, which we call type-A and type-B animals in the present study. Although these invertebrate chordates are largely isolated reproductively, hybrids can be found in wild populations, suggesting incomplete prezygotic barriers. Although the genome of type-A animals has been decoded and widely used, the genome for type-B animals has not been decoded at the chromosomal level. In the present study, we sequenced the genomes of two type-B individuals from different sides of the English Channel (in the zone of sympatry with type-A individuals) and compared them at the chromosomal level with the type-A genome. Although the overall structures were well conserved between type A and type B, chromosomal alignments revealed many inversions differentiating these two types of Ciona; it is probable that the frequent inversions have contributed to separation between these two lineages. In addition, comparisons of the genomes between the two type-B individuals revealed that type B had high rates of inversion polymorphisms and nucleotide polymorphisms, and thus type B might be in the process of differentiation into multiple new types or species. Our results suggest an important role of inversions in chromosomal speciation of these broadcasting spawners.


Asunto(s)
Inversión Cromosómica , Ciona intestinalis/genética , Simpatría , Animales , Tamaño del Genoma , Polimorfismo Genético
6.
G3 (Bethesda) ; 11(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33621334

RESUMEN

Corals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis have been recognized for decades. These include brown (N morph), yellow green (G), and purple (P) forms. The tips of axial polyps of each morph exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa Prefecture, during the summer of 2017, N and P morphs experienced bleaching, in which many N morphs died. Dinoflagellates (Symbiodiniaceae) are essential partners of scleractinian corals, and photosynthetic activity of symbionts was reduced in N and P morphs. In contrast, G morphs successfully withstood the stress. Examination of the clade and type of Symbiodiniaceae indicated that the three color-morphs host similar sets of Clade-C symbionts, suggesting that beaching of N and P morphs is unlikely attributable to differences in the clade of Symbiodiniaceae the color morphs hosted. Fluorescent proteins play pivotal roles in physiological regulation of corals. Since the A. tenuis genome has been decoded, we identified five genes for green fluorescent proteins (GFPs), two for cyan fluorescent proteins (CFPs), three for red fluorescent proteins (RFPs), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles under outdoor aquarium conditions demonstrated that (a) expression of CFP and REP was quite low during the summer in all three morphs, (b) P morphs expressed higher levels of ChrP than N and G morphs, (c) both N and G morphs expressed GFP more highly than P morphs, and (d) GFP expression in N morphs was reduced during summer whereas G morphs maintained high levels of GFP expression throughout the summer. Although further studies are required to understand the biological significance of these color morphs of A. tenuis, our results suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs of this coral.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Arrecifes de Coral , Ecosistema , Estrés Fisiológico , Simbiosis
7.
Mol Biol Evol ; 38(1): 16-30, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32877528

RESUMEN

The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures.


Asunto(s)
Adaptación Biológica , Antozoos/genética , Evolución Biológica , Cambio Climático , Fósiles , Animales , Genoma
8.
BMC Genomics ; 21(1): 422, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32586267

RESUMEN

BACKGROUND: The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is one of the most important edible seaweeds, and it is cultivated for market primarily in Okinawa, Japan. Four strains, denominated S, K, O, and C, with distinctively different morphologies, have been cultivated commercially since the early 2000s. We previously reported a draft genome of the S-strain. To facilitate studies of seaweed biology for future aquaculture, we here decoded and analyzed genomes of the other three strains (K, O, and C). RESULTS: Here we improved the genome of the S-strain (ver. 2, 130 Mbp, 12,999 genes), and decoded the K-strain (135 Mbp, 12,511 genes), the O-strain (140 Mbp, 12,548 genes), and the C-strain (143 Mbp, 12,182 genes). Molecular phylogenies, using mitochondrial and nuclear genes, showed that the S-strain diverged first, followed by the K-strain, and most recently the C- and O-strains. Comparisons of genome architecture among the four strains document the frequent occurrence of inversions. In addition to gene acquisitions and losses, the S-, K-, O-, and C-strains possess 457, 344, 367, and 262 gene families unique to each strain, respectively. Comprehensive Blast searches showed that most genes have no sequence similarity to any entries in the non-redundant protein sequence database, although GO annotation suggested that they likely function in relation to molecular and biological processes and cellular components. CONCLUSIONS: Our study compares the genomes of four strains of C. okamuranus and examines their phylogenetic relationships. Due to global environmental changes, including temperature increases, acidification, and pollution, brown algal aquaculture is facing critical challenges. Genomic and phylogenetic information reported by the present research provides useful tools for isolation of novel strains.


Asunto(s)
Genómica/métodos , Phaeophyceae/clasificación , Algas Marinas/genética , Acuicultura , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Tamaño del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Mitocondriales/genética , Phaeophyceae/genética , Filogenia , Algas Marinas/clasificación
9.
Sci Rep ; 9(1): 4607, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872679

RESUMEN

The brown alga, Nemacystus decipiens ("ito-mozuku" in Japanese), is one of the major edible seaweeds, cultivated principally in Okinawa, Japan. N. decipiens is also a significant source of fucoidan, which has various physiological activities. To facilitate brown algal studies, we decoded the ~154 Mbp draft genome of N. decipiens Onna-1 strain. The genome is estimated to contain 15,156 protein-coding genes, ~78% of which are substantiated by corresponding mRNAs. Mitochondrial genes analysis showed a close relationship between N. decipiens and Cladosiphon okamuranus. Comparisons with the C. okamuranus and Ectocarpus siliculosus genomes identified a set of N. decipiens-specific genes. Gene ontology annotation showed more than half of these are classified as molecular function, enzymatic activity, and/or biological process. Extracellular matrix analysis revealed domains shared among three brown algae. Characterization of genes that encode enzymes involved in the biosynthetic pathway for sulfated fucan showed two sets of genes fused in the genome. One is a fusion of L-fucokinase and GDP-fucose pyrophosphorylase genes, a feature shared with C. okamuranus. Another fusion is between an ST-domain-containing gene and an alpha/beta hydrolase gene. Although the function of fused genes should be examined in future, these results suggest that N. decipiens is another promising source of fucoidan.


Asunto(s)
Vías Biosintéticas/genética , Genoma/genética , Phaeophyceae/genética , Polisacáridos/genética , Hidrolasas/genética , Japón , Anotación de Secuencia Molecular/métodos , Algas Marinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...