Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34311841

RESUMEN

Muscle function relies on the precise architecture of dynamic contractile elements, which must be fine-tuned to maintain motility throughout life. Muscle is also plastic, and remodeled in response to stress, growth, neural and metabolic inputs. The conserved muscle-enriched microRNA, miR-1, regulates distinct aspects of muscle development, but whether it plays a role during aging is unknown. Here we investigated Caenorhabditis elegans miR-1 in muscle function in response to proteostatic stress. mir-1 deletion improved mid-life muscle motility, pharyngeal pumping, and organismal longevity upon polyQ35 proteotoxic challenge. We identified multiple vacuolar ATPase subunits as subject to miR-1 control, and the regulatory subunit vha-13/ATP6V1A as a direct target downregulated via its 3'UTR to mediate miR-1 physiology. miR-1 further regulates nuclear localization of lysosomal biogenesis factor HLH-30/TFEB and lysosomal acidification. Our studies reveal that miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact muscle function and health during aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , MicroARNs/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Núcleo Celular , Longevidad/genética , Músculos/metabolismo , Mutación/genética
2.
Aging (Albany NY) ; 12(23): 23525-23547, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33276344

RESUMEN

Some genes are essential for survival, while other genes play modulatory roles on health and survival. Genes that play modulatory roles may promote an organism's survival and health by fine-tuning physiological processes. An unbiased search for genes that alter an organism's ability to maintain aspects of health may uncover modulators of lifespan and healthspan. From an unbiased screen for Caenorhabditis elegans mutants that show a progressive decline in motility, we aimed to identify genes that play a modulatory role in maintenance of locomotor healthspan. Here we report the involvement of hda-3, encoding a class I histone deacetylase, as a genetic factor that contributes in the maintenance of general health and locomotion in C. elegans. We identified a missense mutation in HDA-3 as the causative mutation in one of the isolated strains that show a progressive decline in maximum velocity and travel distance. From transcriptome analysis, we found a cluster of genes on Chromosome II carrying BATH domains that were downregulated by hda-3. Furthermore, downregulation of individual bath genes leads to significant decline in motility. Our study identifies genetic factors that modulate the maintenance of locomotor healthspan and may reveal potential targets for delaying age-related locomotor decline.


Asunto(s)
Envejecimiento/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Histona Desacetilasas/genética , Locomoción/genética , Mutación Missense , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/metabolismo , Distrofina/genética , Distrofina/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Transcriptoma
3.
G3 (Bethesda) ; 9(8): 2415-2423, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31213517

RESUMEN

Two people with the same lifespan do not necessarily have the same healthspan. One person may retain locomotor and cognitive abilities until the end of life, while another person may lose them during adulthood. Unbiased searches for genes that are required to maintain locomotor ability during adulthood may uncover key regulators of locomotor healthspan. Here, we take advantage of the relatively short lifespan of the nematode Caenorhabditis elegans and develop a novel screening procedure to collect mutants with locomotor deficits that become apparent in adulthood. After ethyl methanesulfonate mutagenesis, we isolated five C. elegans mutant strains that progressively lose adult locomotor ability. In one of the mutant strains, a nonsense mutation in elpc-2, which encodes Elongator Complex Protein Component 2, causes a progressive decline in locomotor ability during adulthood. Mutants and mutations identified in the present screen may provide insights into mechanisms of age-related locomotor impairment and the maintenance of locomotor healthspan.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Locomoción , Mutación , Fenotipo , Animales , Estudios de Asociación Genética
4.
Prog Retin Eye Res ; 43: 1-16, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25016980

RESUMEN

The dedicator of cytokinesis (Dock) family is composed of atypical guanine exchange factors (GEFs) that activate the Rho GTPases Rac1 and Cdc42. Rho GTPases are best documented for their roles in actin polymerization and they regulate important cellular functions, including morphogenesis, migration, neuronal development, and cell division and adhesion. To date, 11 Dock family members have been identified and their roles have been reported in diverse contexts. There has been increasing interest in elucidating the roles of Dock proteins in recent years and studies have revealed that they are potential therapeutic targets for various diseases, including glaucoma, Alzheimer's disease, cancer, attention deficit hyperactivity disorder and combined immunodeficiency. Among the Dock proteins, Dock3 is predominantly expressed in the central nervous system and recent studies have revealed that Dock3 plays a role in protecting retinal ganglion cells from neurotoxicity and oxidative stress as well as in promoting optic nerve regeneration. In this review, we discuss the current understanding of the 11 Dock GEFs and their therapeutic potential, with a particular focus on Dock3 as a novel target for the treatment of glaucoma and other neurodegenerative diseases.


Asunto(s)
Glaucoma/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Regeneración Nerviosa/fisiología , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Animales , Axones/fisiología , Modelos Animales de Enfermedad , Humanos , Ratones , Enfermedades Neurodegenerativas/tratamiento farmacológico , Células Ganglionares de la Retina/fisiología
5.
Genes Cells ; 17(8): 688-97, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22734669

RESUMEN

Dock3, a new member of the guanine nucleotide exchange factor family, causes cellular morphological changes by activating the small GTPase Rac1. Overexpression of Dock3 in neural cells promotes neurite outgrowth through the formation of a protein complex with Fyn and WAVE downstream of brain-derived neurotrophic factor (BDNF) signaling. Here, we report a novel Dock3-mediated BDNF pathway for neurite outgrowth. We show that Dock3 forms a complex with Elmo and activated RhoG downstream of BDNF-TrkB signaling and induces neurite outgrowth via Rac1 activation in PC12 cells. We also show the importance of Dock3 phosphorylation in Rac1 activation and show two key events that are necessary for efficient Dock3 phosphorylation: membrane recruitment of Dock3 and interaction of Dock3 with Elmo. These results suggest that Dock3 plays important roles downstream of BDNF signaling in the central nervous system where it stimulates actin polymerization by multiple pathways.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Receptor trkB/metabolismo , Transducción de Señal , Factores Complejos Ternarios/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células COS , Proteínas Portadoras/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Chlorocebus aethiops , Activación Enzimática , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Células PC12 , Fosforilación , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Ratas , Receptor trkB/genética , Factores Complejos Ternarios/genética , Transfección , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1 , Proteínas de Unión al GTP rho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA