Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(23): e113955, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850882

RESUMEN

Recent studies have reported the differentiation of pluripotent cells into oocytes in vitro. However, the developmental competence of in vitro-generated oocytes remains low. Here, we perform a comprehensive comparison of mouse germ cell development in vitro over all culture steps versus in vivo with the goal to understand mechanisms underlying poor oocyte quality. We show that the in vitro differentiation of primordial germ cells to growing oocytes and subsequent follicle growth is critical for competence for preimplantation development. Systematic transcriptome analysis of single oocytes that were subjected to different culture steps identifies genes that are normally upregulated during oocyte growth to be susceptible for misregulation during in vitro oogenesis. Many misregulated genes are Polycomb targets. Deregulation of Polycomb repression is therefore a key cause and the earliest defect known in in vitro oocyte differentiation. Conversely, structurally normal in vitro-derived oocytes fail at zygotic genome activation and show abnormal acquisition of 5-hydroxymethylcytosine on maternal chromosomes. Our data identify epigenetic regulation at an early stage of oogenesis limiting developmental competence and suggest opportunities for future improvements.


Asunto(s)
Epigénesis Genética , Oocitos , Femenino , Animales , Ratones , Folículo Ovárico , Oogénesis/genética , Células Germinativas
3.
EMBO J ; 40(12): e106818, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33909924

RESUMEN

Mouse embryonic stem cells (mESCs) are biased toward producing embryonic rather than extraembryonic endoderm fates. Here, we identify the mechanism of this barrier and report that the histone deacetylase Hdac3 and the transcriptional corepressor Dax1 cooperatively limit the lineage repertoire of mESCs by silencing an enhancer of the extraembryonic endoderm-specifying transcription factor Gata6. This restriction is opposed by the pluripotency transcription factors Nr5a2 and Esrrb, which promote cell type conversion. Perturbation of the barrier extends mESC potency and allows formation of 3D spheroids that mimic the spatial segregation of embryonic epiblast and extraembryonic endoderm in early embryos. Overall, this study shows that transcriptional repressors stabilize pluripotency by biasing the equilibrium between embryonic and extraembryonic lineages that is hardwired into the mESC transcriptional network.


Asunto(s)
Receptor Nuclear Huérfano DAX-1 , Histona Desacetilasas , Células Madre Embrionarias de Ratones/citología , Animales , Diferenciación Celular , Células Cultivadas , Receptor Nuclear Huérfano DAX-1/genética , Receptor Nuclear Huérfano DAX-1/metabolismo , Femenino , Factor de Transcripción GATA6/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Masculino , Ratones , ARN Interferente Pequeño/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo
4.
Nat Metab ; 3(2): 196-210, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619377

RESUMEN

Ketone bodies are generated in the liver and allow for the maintenance of systemic caloric and energy homeostasis during fasting and caloric restriction. It has previously been demonstrated that neonatal ketogenesis is activated independently of starvation. However, the role of ketogenesis during the perinatal period remains unclear. Here, we show that neonatal ketogenesis plays a protective role in mitochondrial function. We generated a mouse model of insufficient ketogenesis by disrupting the rate-limiting hydroxymethylglutaryl-CoA synthase 2 enzyme gene (Hmgcs2). Hmgcs2 knockout (KO) neonates develop microvesicular steatosis within a few days of birth. Electron microscopic analysis and metabolite profiling indicate a restricted energy production capacity and accumulation of acetyl-CoA in Hmgcs2 KO mice. Furthermore, acetylome analysis of Hmgcs2 KO cells revealed enhanced acetylation of mitochondrial proteins. These findings suggest that neonatal ketogenesis protects the energy-producing capacity of mitochondria by preventing the hyperacetylation of mitochondrial proteins.


Asunto(s)
Metabolismo Energético/fisiología , Cuerpos Cetónicos/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Acetilación , Animales , Animales Recién Nacidos , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Microvasos/fisiología , Consumo de Oxígeno
5.
Commun Biol ; 3(1): 725, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257809

RESUMEN

Temporal and spatial colinear expression of the Hox genes determines the specification of positional identities during vertebrate development. Post-translational modifications of histones contribute to transcriptional regulation. Lysine demethylase 7A (Kdm7a) demethylates lysine 9 or 27 di-methylation of histone H3 (H3K9me2, H3K27me2) and participates in the transcriptional activation of developmental genes. However, the role of Kdm7a during mouse embryonic development remains to be elucidated. Herein, we show that Kdm7a-/- mouse exhibits an anterior homeotic transformation of the axial skeleton, including an increased number of presacral elements. Importantly, posterior Hox genes (caudally from Hox9) are specifically downregulated in the Kdm7a-/- embryo, which correlates with increased levels of H3K9me2, not H3K27me2. These observations suggest that Kdm7a controls the transcription of posterior Hox genes, likely via its demethylating activity, and thereby regulating the murine anterior-posterior development. Such epigenetic regulatory mechanisms may be harnessed for proper control of coordinate body patterning in vertebrates.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Histona Demetilasas con Dominio de Jumonji , Animales , Embrión de Mamíferos/metabolismo , Femenino , Células HeLa , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Familia de Multigenes/genética
6.
Mol Cell ; 77(4): 825-839.e7, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31837995

RESUMEN

In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth. Oocytes at late stages show self-interacting, cohesin-independent compartmental domains marked by H3K27me3, therefore termed Polycomb-associating domains (PADs). PADs and inter-PAD (iPAD) regions form compartment-like structures with strong inter-domain interactions among nearby PADs. PADs disassemble upon meiotic resumption from diplotene arrest but briefly reappear on the maternal genome after fertilization. Upon maternal depletion of Eed, PADs are largely intact in oocytes, but their reestablishment after fertilization is compromised. By contrast, depletion of Polycomb repressive complex 1 (PRC1) proteins attenuates PADs in oocytes, which is associated with substantial gene de-repression in PADs. These data reveal a critical role of Polycomb in regulating chromatin architecture during mammalian oocyte growth and early development.


Asunto(s)
Cromatina/química , Oocitos/crecimiento & desarrollo , Oogénesis/genética , Proteínas del Grupo Polycomb/fisiología , Animales , Blastocisto/química , Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Embrión de Mamíferos/química , Silenciador del Gen , Código de Histonas , Ratones , Oocitos/química , Transcripción Genética , Cohesinas
7.
Elife ; 82019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30663981

RESUMEN

Accurate lineage reconstruction of mammalian pre-implantation development is essential for inferring the earliest cell fate decisions. Lineage tracing using global fluorescence labeling techniques is complicated by increasing cell density and rapid embryo rotation, which hampers automatic alignment and accurate cell tracking of obtained four-dimensional imaging data sets. Here, we exploit the advantageous properties of primed convertible fluorescent proteins (pr-pcFPs) to simultaneously visualize the global green and the photoconverted red population in order to minimize tracking uncertainties over prolonged time windows. Confined primed conversion of H2B-pr-mEosFP-labeled nuclei combined with light-sheet imaging greatly facilitates segmentation, classification, and tracking of individual nuclei from the 4-cell stage up to the blastocyst. Using green and red labels as fiducial markers, we computationally correct for rotational and translational drift, reduce overall data size, and accomplish high-fidelity lineage tracing even for increased imaging time intervals - addressing major concerns in the field of volumetric embryo imaging.


Asunto(s)
Blastocisto , Luz , Animales , Linaje de la Célula , Desarrollo Embrionario , Fluorescencia , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...