Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(24): e202303494, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37058001

RESUMEN

Post-synthesis modification of polymers streamlines the synthesis of functionalized polymers, but is often incomplete due to the negative polymer effects. Developing efficient polymer reactions in artificial systems thus represents a long-standing objective in the fields of polymer and material science. Here, we show unprecedented macrocycle-metal-complex-catalyzed systems for efficient polymer reaction that result in 100 % transformation of the main chain functional groups presumably via a processive mode reaction. The complete polymer reactions were confirmed in not only intramolecular reaction (hydroamination) but also intermolecular reaction (hydrosilylation) by using Pd- and Pt-macrocycle-catalyzed systems. The most fascinating feature of the both reactions is that higher-molecular-weight polymers reach completion faster. Various studies suggested that the reactions occur in the catalyst cavity via the formation of a supramolecular complex between the macrocycle catalyst and polymer substrate like pseudorotaxane, which should be of characteristic of the efficient polymer reactions progressing in a processive mode.

2.
ACS Appl Mater Interfaces ; 15(1): 1661-1674, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36541074

RESUMEN

In recent years, highly designable organic porous materials have attracted considerable attention in the development of new types of molecular adsorption-desorption materials. The adsorption-desorption process also changes the electronic structure via the existence of guest molecules. Therefore, it is possible to change the physical property during the guest adsorption-desorption cycle using an appropriate chemical design of the host crystal lattice. As the development of n-type organic semiconductors has been limited, we focused on designing an n-type organic semiconductor material to control the host crystal lattice, electronic dimensionality, chemical stability, and high electron mobility using an ionic naphthalenediimide (NDI) derivative. Low symmetrical dianionic bis(benzene-m-sulfonate)-naphthalenediimide (m-BSNDI2-) forms various types of single-crystal (M+)2(m-BSNDI2-)·n(guest) with a combination of M+ = Na+, K+, Rb+, and guest = H2O, CH3OH. Four crystals of (K+)2(m-BSNDI2-)·n(H2O), (K+)2(m-BSNDI2-)·n(CH3OH), α-(K+)2(m-BSNDI2-), and ß-(K+)2(m-BSNDI2-) were transformable using the guest adsorption-desorption cycle. Two kinds of single-crystal (K+)2(m-BSNDI2-)·n(CH3OH) with n = 0 and 2.0 showed a single-crystal to single-crystal (SCSC) transformation through CH3OH desorption. On the contrary, five kinds of single crystals with n = 0, 3.0, 3.3, 4.75, and 5.5 were identified in the single-crystal X-ray structural analyses of (K+)2(m-BSNDI2-)·n(H2O). Systematic change of the ionic radii in (M+)2(m-BSNDI2-) modified the crystal lattice flexibility for the guest adsorption-desorption cycles.

3.
Plant Biotechnol (Tokyo) ; 38(2): 205-218, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34393599

RESUMEN

Uridine 5'-diphosphate (UDP)-glucose dehydrogenase (UGD) produces UDP-glucuronic acid from UDP-glucose as a precursor of plant cell wall polysaccharides. UDP-glucuronic acid is also a sugar donor for the glycosylation of various plant specialized metabolites. Nevertheless, the roles of UGDs in plant specialized metabolism remain poorly understood. Glycyrrhiza species (licorice), which are medicinal legumes, biosynthesize triterpenoid saponins, soyasaponins and glycyrrhizin, commonly glucuronosylated at the C-3 position of the triterpenoid scaffold. Often, several different UGD isoforms are present in plants. To gain insight into potential functional differences among UGD isoforms in triterpenoid saponin biosynthesis in relation to cell wall component biosynthesis, we identified and characterized Glycyrrhiza uralensis UGDs (GuUGDs), which were discovered to comprise five isoforms, four of which (GuUGD1-4) showed UGD activity in vitro. GuUGD1-4 had different biochemical properties, including their affinity for UDP-glucose, catalytic constant, and sensitivity to feedback inhibitors. GuUGD2 had the highest catalytic constant and highest gene expression level among the GuUGDs, suggesting that it is the major isoform contributing to the transition from UDP-glucose to UDP-glucuronic acid in planta. To evaluate the contribution of GuUGD isoforms to saponin biosynthesis, we compared the expression patterns of GuUGDs with those of saponin biosynthetic genes in methyl jasmonate (MeJA)-treated cultured stolons. GuUGD1-4 showed delayed responses to MeJA compared to those of saponin biosynthetic genes, suggesting that MeJA-responsive expression of GuUGDs compensates for the decreased UDP-glucuronic acid pool due to consumption during saponin biosynthesis.

4.
J Am Chem Soc ; 143(2): 1046-1060, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33378189

RESUMEN

Dianionic bis(propionate)-naphthalenediimide (PCNDI2-) formed simple 2:1 cation-anion salts of (M+)2(PCNDI2-)·(H2O)n (M+ = Li+, Na+, K+, Rb+, and Cs+), which exhibited reversible H2O adsorption-desorption behavior because of the presence of their electrostatically binding crystal lattices. The maximum H2O adsorption amounts (n) for M+ = Li+, Na+, K+, Rb+, and Cs+ were 0.25, 6.0, 4.0, 6.0, and 2.0, respectively, whereas the reversible gate-opening (gate-closing) H2O adsorption-desorption isotherms were observed at 273 and 298 K, except for M+ = Li+. High ionic conductivities of around 10-4-10-5 S cm-1 were observed in M+ = Na+ and K+ salts, whereas short-range thermal fluctuations occurred in large cations of M+ = Rb+ and Cs+. The change in the electrostatic lattice energy for M+ = Na+ and K+ salts during the H2O adsorption-desorption cycles was significantly larger than those for M+ = Rb+ and Cs+. Therefore, the Na+ and K+ salts had a considerably flexible electrostatic crystal lattice with a large amplitude of lattice modulation during the H2O sorption cycle. In contrast, the lattice modulation for M+ = Rb+ and Cs+ salts involved a low magnitude of ion displacements, forming a relatively rigid cation-anion electrostatic crystal lattice. The flash-photolysis time-resolved microwave conductivity and transition absorption spectroscopy results revealed the high electron mobility of H2O-adsorbed thin films, wherein the crystallized H2O molecules did not act as electron-trapping sites. The values of electron mobility increased in the order of Cs+ ≈ Rb+ > K+ > Na+ > Li+.

5.
ACS Appl Mater Interfaces ; 12(33): 37391-37399, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814389

RESUMEN

Polar H2O molecules generally act as trapping sites and suppress the electron mobility of n-type organic semiconductors, making chemical design of H2O-tolerant and responsive n-type semiconductors an important step toward multifunctional electron-ion coupling devices. The introduction of effective electrostatic interactions between potassium ions (K+) and carboxylate (-COO-) anions into the electron-transporting naphthalenediimide π-framework enables the design of high-performance H2O-tolerant n-type semiconductors with a reversible H2O adsorption-desorption ability, where the electron mobility and K+ ionic conductivity were coupled with the reversible H2O sorption behavior. The reversible H2O adsorption into the crystals enhanced the electron mobility from 0.04 to 0.28 cm2 V-1 s-1, whereas the K+ ionic conductivity decreased from 3.4 × 10-5 to 4.7 × 10-7 S cm-1. Because this reversible electron-ion conducting switch is responsive to H2O sorption behavior, it is a strong candidate for H2O gating carrier transport systems.

6.
J Am Chem Soc ; 141(50): 19807-19816, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31746597

RESUMEN

Establishing design principles to create nonplanar π-conjugated molecules is crucial for the development of novel functional materials. Herein, we describe the synthesis and properties of dinaphtho[1,8-bc:1',8'-ef]azepine bisimides (DNABIs). Their molecular design is conceptually based on the insertion of a nitrogen atom into a perylene bisimide core. We have synthesized several DNABI derivatives with a hydrogen atom, a primary alkyl group, or an aryl group on the central nitrogen atom. These DNABIs exhibit nonplanar conformations, flexible structural changes, and ambipolar redox activity. The steric effect around the central nitrogen atom substantially affects the overall structures and results in two different conformations: a nonsymmetric bent conformation and a symmetric twisted conformation, accompanied by a drastic change in electronic properties. Notably, the nonsymmetric DNABI undergoes unique structural changes in response to the application of an external electric field, which is due to molecular motions that are accompanied by an orientational fluctuation of the dipole moment. Furthermore, the addition of a chiral Brønsted base to N-unsubstituted DNABI affords control over the helical chirality via hydrogen-bonding interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...