Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572865

RESUMEN

INTRODUCTION: Emerging evidence links changes in the gut microbiome to late-onset Alzheimer's disease (LOAD), necessitating examination of AD mouse models with consideration of the microbiome. METHODS: We used shotgun metagenomics and untargeted metabolomics to study the human amyloid beta knock-in (hAß-KI) murine model for LOAD compared to both wild-type (WT) mice and a model for early-onset AD (3xTg-AD). RESULTS: Eighteen-month female (but not male) hAß-KI microbiomes were distinct from WT microbiomes, with AD genotype accounting for 18% of the variance by permutational multivariate analysis of variance (PERMANOVA). Metabolomic diversity differences were observed in females, however no individual metabolites were differentially abundant. hAß-KI mice microbiomes were distinguishable from 3xTg-AD animals (81% accuracy by random forest modeling), with separation primarily driven by Romboutsia ilealis and Turicibacter species. Microbiomes were highly cage specific, with cage assignment accounting for more than 40% of the PERMANOVA variance between the groups. DISCUSSION: These findings highlight a sex-dependent variation in the microbiomes of hAß-KI mice and underscore the importance of considering the microbiome when designing studies that use murine models for AD. HIGHLIGHTS: Microbial diversity and the abundance of several species differed in human amyloid beta knock-in (hAß-KI) females but not males. Correlations to Alzheimer's disease (AD) genotype were stronger for the microbiome than the metabolome. Microbiomes from hAß-KI mice were distinct from 3xTg-AD mice. Cage effects accounted for most of the variance in the microbiome and metabolome.

2.
Alzheimers Dement ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506634

RESUMEN

BACKGROUND: Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS: CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS: Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aß) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aß-associated inflammation, gliosis, and neuronal damage. DISCUSSION: Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aß pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS: ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.

3.
Alzheimers Dement ; 20(4): 2794-2816, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426371

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder with multifactorial etiology, including genetic factors that play a significant role in disease risk and resilience. However, the role of genetic diversity in preclinical AD studies has received limited attention. METHODS: We crossed five Collaborative Cross strains with 5xFAD C57BL/6J female mice to generate F1 mice with and without the 5xFAD transgene. Amyloid plaque pathology, microglial and astrocytic responses, neurofilament light chain levels, and gene expression were assessed at various ages. RESULTS: Genetic diversity significantly impacts AD-related pathology. Hybrid strains showed resistance to amyloid plaque formation and neuronal damage. Transcriptome diversity was maintained across ages and sexes, with observable strain-specific variations in AD-related phenotypes. Comparative gene expression analysis indicated correlations between mouse strains and human AD. DISCUSSION: Increasing genetic diversity promotes resilience to AD-related pathogenesis, relative to an inbred C57BL/6J background, reinforcing the importance of genetic diversity in uncovering resilience in the development of AD. HIGHLIGHTS: Genetic diversity's impact on AD in mice was explored. Diverse F1 mouse strains were used for AD study, via the Collaborative Cross. Strain-specific variations in AD pathology, glia, and transcription were found. Strains resilient to plaque formation and plasma neurofilament light chain (NfL) increases were identified. Correlations with human AD transcriptomics were observed.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Ratones , Humanos , Femenino , Animales , Enfermedad de Alzheimer/patología , Placa Amiloide/patología , Ratones Endogámicos C57BL , Microglía/metabolismo , Variación Genética/genética , Modelos Animales de Enfermedad , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo
4.
Alzheimers Dement ; 20(4): 2922-2942, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460121

RESUMEN

INTRODUCTION: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS: The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION: The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS: BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Neuroglía/patología , Placa Amiloide/patología , Humanos
5.
Front Immunol ; 15: 1359534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352866

RESUMEN

Introduction: Leaky gut has been linked to autoimmune disorders including lupus. We previously reported upregulation of anti-flagellin antibodies in the blood of lupus patients and lupus-prone mice, which led to our hypothesis that a leaky gut drives lupus through bacterial flagellin-mediated activation of toll-like receptor 5 (TLR5). Methods: We created MRL/lpr mice with global Tlr5 deletion through CRISPR/Cas9 and investigated lupus-like disease in these mice. Result: Contrary to our hypothesis that the deletion of Tlr5 would attenuate lupus, our results showed exacerbation of lupus with Tlr5 deficiency in female MRL/lpr mice. Remarkably higher levels of proteinuria were observed in Tlr5 -/- MRL/lpr mice suggesting aggravated glomerulonephritis. Histopathological analysis confirmed this result, and Tlr5 deletion significantly increased the deposition of IgG and complement C3 in the glomeruli. In addition, Tlr5 deficiency significantly increased renal infiltration of Th17 and activated cDC1 cells. Splenomegaly and lymphadenopathy were also aggravated in Tlr5-/- MRL/lpr mice suggesting impact on lymphoproliferation. In the spleen, significant decreased frequencies of regulatory lymphocytes and increased germinal centers were observed with Tlr5 deletion. Notably, Tlr5 deficiency did not change host metabolism or the existing leaky gut; however, it significantly reshaped the fecal microbiota. Conclusion: Global deletion of Tlr5 exacerbates lupus-like disease in MRL/lpr mice. Future studies will elucidate the underlying mechanisms by which Tlr5 deficiency modulates host-microbiota interactions to exacerbate lupus.


Asunto(s)
Glomerulonefritis , Receptor Toll-Like 5 , Animales , Femenino , Humanos , Ratones , Glomerulonefritis/patología , Riñón/patología , Ratones Endogámicos MRL lpr , Proteinuria
6.
Mol Neurodegener ; 18(1): 12, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36803190

RESUMEN

BACKGROUND: The TREM2 R47H variant is one of the strongest genetic risk factors for late-onset Alzheimer's Disease (AD). Unfortunately, many current Trem2 R47H mouse models are associated with cryptic mRNA splicing of the mutant allele that produces a confounding reduction in protein product. To overcome this issue, we developed the Trem2R47H NSS (Normal Splice Site) mouse model in which the Trem2 allele is expressed at a similar level to the wild-type Trem2 allele without evidence of cryptic splicing products. METHODS: Trem2R47H NSS mice were treated with the demyelinating agent cuprizone, or crossed with the 5xFAD mouse model of amyloidosis, to explore the impact of the TREM2 R47H variant on inflammatory responses to demyelination, plaque development, and the brain's response to plaques. RESULTS: Trem2R47H NSS mice display an appropriate inflammatory response to cuprizone challenge, and do not recapitulate the null allele in terms of impeded inflammatory responses to demyelination. Utilizing the 5xFAD mouse model, we report age- and disease-dependent changes in Trem2R47H NSS mice in response to development of AD-like pathology. At an early (4-month-old) disease stage, hemizygous 5xFAD/homozygous Trem2R47H NSS (5xFAD/Trem2R47H NSS) mice have reduced size and number of microglia that display impaired interaction with plaques compared to microglia in age-matched 5xFAD hemizygous controls. This is associated with a suppressed inflammatory response but increased dystrophic neurites and axonal damage as measured by plasma neurofilament light chain (NfL) level. Homozygosity for Trem2R47H NSS suppressed LTP deficits and loss of presynaptic puncta caused by the 5xFAD transgene array in 4-month-old mice. At a more advanced (12-month-old) disease stage 5xFAD/Trem2R47H NSS mice no longer display impaired plaque-microglia interaction or suppressed inflammatory gene expression, although NfL levels remain elevated, and a unique interferon-related gene expression signature is seen. Twelve-month old Trem2R47H NSS mice also display LTP deficits and postsynaptic loss. CONCLUSIONS: The Trem2R47H NSS mouse is a valuable model that can be used to investigate age-dependent effects of the AD-risk R47H mutation on TREM2 and microglial function including its effects on plaque development, microglial-plaque interaction, production of a unique interferon signature and associated tissue damage.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Desmielinizantes , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Cuprizona/metabolismo , Empalme del ARN , Mutación , Placa Amiloide/patología , Modelos Animales de Enfermedad , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Microglía/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
7.
Sci Data ; 8(1): 270, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654824

RESUMEN

Mouse models of human diseases are invaluable tools for studying pathogenic mechanisms and testing interventions and therapeutics. For disorders such as Alzheimer's disease in which numerous models are being generated, a challenging first step is to identify the most appropriate model and age to effectively evaluate new therapeutic approaches. Here we conducted a detailed phenotypic characterization of the 5xFAD model on a congenic C57BL/6 J strain background, across its lifespan - including a seldomly analyzed 18-month old time point to provide temporally correlated phenotyping of this model and a template for characterization of new models of LOAD as they are generated. This comprehensive analysis included quantification of plaque burden, Aß biochemical levels, and neuropathology, neurophysiological measurements and behavioral and cognitive assessments, and evaluation of microglia, astrocytes, and neurons. Analysis of transcriptional changes was conducted using bulk-tissue generated RNA-seq data from microdissected cortices and hippocampi as a function of aging, which can be explored at the MODEL-AD Explorer and AD Knowledge Portal. This deep-phenotyping pipeline identified novel aspects of age-related pathology in the 5xFAD model.


Asunto(s)
Enfermedad de Alzheimer/genética , Modelos Animales de Enfermedad , Fenotipo , Animales , Conducta Animal , Hipocampo , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , RNA-Seq , Transmisión Sináptica
8.
Front Neurosci ; 15: 785276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35140584

RESUMEN

Animal models of disease are valuable resources for investigating pathogenic mechanisms and potential therapeutic interventions. However, for complex disorders such as Alzheimer's disease (AD), the generation and availability of innumerous distinct animal models present unique challenges to AD researchers and hinder the success of useful therapies. Here, we conducted an in-depth analysis of the 3xTg-AD mouse model of AD across its lifespan to better inform the field of the various pathologies that appear at specific ages, and comment on drift that has occurred in the development of pathology in this line since its development 20 years ago. This modern characterization of the 3xTg-AD model includes an assessment of impairments in long-term potentiation followed by quantification of amyloid beta (Aß) plaque burden and neurofibrillary tau tangles, biochemical levels of Aß and tau protein, and neuropathological markers such as gliosis and accumulation of dystrophic neurites. We also present a novel comparison of the 3xTg-AD model with the 5xFAD model using the same deep-phenotyping characterization pipeline and show plasma NfL is strongly driven by plaque burden. The results from these analyses are freely available via the AD Knowledge Portal (https://modeladexplorer.org/). Our work demonstrates the utility of a characterization pipeline that generates robust and standardized information relevant to investigating and comparing disease etiologies of current and future models of AD.

9.
Clin Epigenetics ; 9: 89, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28855971

RESUMEN

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a multisystem developmental disorder frequently associated with heterozygous loss-of-function mutations of Nipped-B-like (NIPBL), the human homolog of Drosophila Nipped-B. NIPBL loads cohesin onto chromatin. Cohesin mediates sister chromatid cohesion important for mitosis but is also increasingly recognized as a regulator of gene expression. In CdLS patient cells and animal models, expression changes of multiple genes with little or no sister chromatid cohesion defect suggests that disruption of gene regulation underlies this disorder. However, the effect of NIPBL haploinsufficiency on cohesin binding, and how this relates to the clinical presentation of CdLS, has not been fully investigated. Nipbl haploinsufficiency causes CdLS-like phenotype in mice. We examined genome-wide cohesin binding and its relationship to gene expression using mouse embryonic fibroblasts (MEFs) from Nipbl+/- mice that recapitulate the CdLS phenotype. RESULTS: We found a global decrease in cohesin binding, including at CCCTC-binding factor (CTCF) binding sites and repeat regions. Cohesin-bound genes were found to be enriched for histone H3 lysine 4 trimethylation (H3K4me3) at their promoters; were disproportionately downregulated in Nipbl mutant MEFs; and displayed evidence of reduced promoter-enhancer interaction. The results suggest that gene activation is the primary cohesin function sensitive to Nipbl reduction. Over 50% of significantly dysregulated transcripts in mutant MEFs come from cohesin target genes, including genes involved in adipogenesis that have been implicated in contributing to the CdLS phenotype. CONCLUSIONS: Decreased cohesin binding at the gene regions is directly linked to disease-specific expression changes. Taken together, our Nipbl haploinsufficiency model allows us to analyze the dosage effect of cohesin loading on CdLS development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Síndrome de Cornelia de Lange/genética , Perfilación de la Expresión Génica/métodos , Haploinsuficiencia , Proteínas/genética , Animales , Sitios de Unión , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Metilación de ADN , Síndrome de Cornelia de Lange/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional , Cohesinas
10.
Artículo en Inglés | MEDLINE | ID: mdl-30631375

RESUMEN

Valvular heart disease is the third-most common cause of heart problems in the United States. Malfunction of the valves can be acquired or congenital and each may lead either to stenosis or regurgitation, or even both in some cases. Heart valve disease is a progressive disease, which is irreversible and may be fatal if left untreated. Pharmacological agents cannot currently prevent valvular calcification or help repair damaged valves, as valve tissue is unable to regenerate spontaneously. Thus, heart valve replacement/repair is the only current available treatment. Heart valve research and development is currently focused on two parallel paths; first, research that aims to understand the underlying mechanisms for heart valve disease to emerge with an ultimate goal to devise medical treatment; and second, efforts to develop repair and replacement options for a diseased valve. Studies that focus on developmental malformation, genetic and disease epigenetics usually employ small animal models that are easy to access for in vivo imaging that minimally disturbs their environment during early stages of development. Alternatively, studies that aim to develop novel device for replacement and repair of diseased valves often employ large animals whose heart size and anatomy closely replicate human's. This paper aims to briefly review the current state-of-the-art animal models, and justification to use an animal model for a particular heart valve related project.

11.
PLoS Biol ; 14(9): e2000197, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27606604

RESUMEN

Elucidating the causes of congenital heart defects is made difficult by the complex morphogenesis of the mammalian heart, which takes place early in development, involves contributions from multiple germ layers, and is controlled by many genes. Here, we use a conditional/invertible genetic strategy to identify the cell lineage(s) responsible for the development of heart defects in a Nipbl-deficient mouse model of Cornelia de Lange Syndrome, in which global yet subtle transcriptional dysregulation leads to development of atrial septal defects (ASDs) at high frequency. Using an approach that allows for recombinase-mediated creation or rescue of Nipbl deficiency in different lineages, we uncover complex interactions between the cardiac mesoderm, endoderm, and the rest of the embryo, whereby the risk conferred by genetic abnormality in any one lineage is modified, in a surprisingly non-additive way, by the status of others. We argue that these results are best understood in the context of a model in which the risk of heart defects is associated with the adequacy of early progenitor cell populations relative to the sizes of the structures they must eventually form.


Asunto(s)
Defectos del Tabique Interatrial/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular , Línea Celular , Femenino , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Corazón/embriología , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Masculino , Ratones Transgénicos , Especificidad de Órganos , Penetrancia , Factores de Riesgo , Factores de Transcripción/metabolismo
12.
Am J Med Genet C Semin Med Genet ; 172(2): 138-45, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27120001

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a multisystem birth defects disorder that affects every tissue and organ system in the body. Understanding the factors that contribute to the origins, prevalence, and severity of these developmental defects provides the most direct approach for developing screens and potential treatments for individuals with CdLS. Since the majority of cases of CdLS are caused by haploinsufficiency for NIPBL (Nipped-B-like, which encodes a cohesin-associated protein), we have developed mouse and zebrafish models of CdLS by using molecular genetic tools to create Nipbl-deficient mice and zebrafish (Nipbl(+/-) mice, zebrafish nipbl morphants). Studies of these vertebrate animal models have yielded novel insights into the developmental etiology and genes/gene pathways that contribute to CdLS-associated birth defects, particularly defects of the gut, heart, craniofacial structures, nervous system, and limbs. Studies of these mouse and zebrafish CdLS models have helped clarify how deficiency for NIPBL, a protein that associates with cohesin and other transcriptional regulators in the nucleus, affects processes important to the emergence of the structural and physiological birth defects observed in CdLS: NIPBL exerts chromosome position-specific effects on gene expression; it influences long-range interactions between different regulatory elements of genes; and it regulates combinatorial and synergistic actions of genes in developing tissues. Our current understanding is that CdLS should be considered as not only a cohesinopathy, but also a "transcriptomopathy," that is, a disease whose underlying etiology is the global dysregulation of gene expression throughout the organism. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Síndrome de Cornelia de Lange/genética , Discapacidades del Desarrollo/genética , Redes Reguladoras de Genes , Animales , Proteínas de Ciclo Celular , Anomalías Congénitas/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas/genética , Pez Cebra
13.
Am J Med Genet C Semin Med Genet ; 172(2): 146-54, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27120109

RESUMEN

Cornelia de Lange Syndrome (CdLS) is characterized by a wide variety of structural and functional abnormalities in almost every organ system of the body. CdLS is now known to be caused by mutations that disrupt the function of the cohesin complex or its regulators, and studies of animal models and cell lines tell us that the effect of these mutations is to produce subtle yet pervasive dysregulation of gene expression. With many hundreds of mostly small gene expression changes occurring in every cell type and tissue, identifying the etiology of any particular birth defect is very challenging. Here we focus on limb abnormalities, which are commonly seen in CdLS. In the limb buds of the Nipbl-haploinsufficient mouse (Nipbl(+/-) mouse), a model for the most common form of CdLS, modest gene expression changes are observed in several candidate pathways whose disruption is known to cause limb abnormalities, yet the limbs of Nipbl(+/-) mice develop relatively normally. We hypothesized that further impairment of candidate pathways might produce limb defects similar to those seen in CdLS, and performed genetic experiments to test this. Focusing on Sonic hedgehog (Shh), Bone morphogenetic protein (Bmp), and Hox gene pathways, we show that decreasing Bmp or Hox function (but not Shh function) enhances polydactyly in Nipbl(+/-) mice, and in some cases produces novel skeletal phenotypes. However, frank limb reductions, as are seen in a subset of individuals with CdLS, do not occur, suggesting that additional signaling and/or gene regulatory pathways are involved in producing such dramatic changes. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Síndrome de Cornelia de Lange/genética , Deformidades Congénitas de las Extremidades/genética , Factores de Transcripción/deficiencia , Animales , Proteínas Morfogenéticas Óseas , Proteínas de Ciclo Celular , Genes Homeobox , Haploinsuficiencia , Proteínas Hedgehog/genética , Ratones , Factores de Transcripción/genética
14.
BMC Bioinformatics ; 16: 397, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26607933

RESUMEN

BACKGROUND: Analysis of single cells in their native environment is a powerful method to address key questions in developmental systems biology. Confocal microscopy imaging of intact tissues, followed by automatic image segmentation, provides a means to conduct cytometric studies while at the same time preserving crucial information about the spatial organization of the tissue and morphological features of the cells. This technique is rapidly evolving but is still not in widespread use among research groups that do not specialize in technique development, perhaps in part for lack of tools that automate repetitive tasks while allowing experts to make the best use of their time in injecting their domain-specific knowledge. RESULTS: Here we focus on a well-established stem cell model system, the C. elegans gonad, as well as on two other model systems widely used to study cell fate specification and morphogenesis: the pre-implantation mouse embryo and the developing mouse olfactory epithelium. We report a pipeline that integrates machine-learning-based cell detection, fast human-in-the-loop curation of these detections, and running of active contours seeded from detections to segment cells. The procedure can be bootstrapped by a small number of manual detections, and outperforms alternative pieces of software we benchmarked on C. elegans gonad datasets. Using cell segmentations to quantify fluorescence contents, we report previously-uncharacterized cell behaviors in the model systems we used. We further show how cell morphological features can be used to identify cell cycle phase; this provides a basis for future tools that will streamline cell cycle experiments by minimizing the need for exogenous cell cycle phase labels. CONCLUSIONS: High-throughput 3D segmentation makes it possible to extract rich information from images that are routinely acquired by biologists, and provides insights - in particular with respect to the cell cycle - that would be difficult to derive otherwise.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Ensayos Analíticos de Alto Rendimiento , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Mucosa Olfatoria/citología , Análisis de la Célula Individual/métodos , Programas Informáticos , Algoritmos , Animales , Blastocisto/citología , Blastocisto/metabolismo , Caenorhabditis elegans/metabolismo , Ciclo Celular/fisiología , Células Cultivadas , Biología Computacional/métodos , Femenino , Gónadas/citología , Gónadas/metabolismo , Humanos , Masculino , Ratones , Microscopía Confocal/métodos , Mucosa Olfatoria/metabolismo
15.
Biochim Biophys Acta ; 1832(12): 2097-102, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23920377

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a genetic disorder linked to mutations in cohesin and its regulators. To date, it is unclear which function of cohesin is more relevant to the pathology of the syndrome. A mouse heterozygous for the gene encoding the cohesin loader Nipbl recapitulates many features of CdLS. We have carefully examined Nipbl deficient cells and here report that they have robust cohesion all along the chromosome. DNA replication, DNA repair and chromosome segregation are carried out efficiently in these cells. While bulk cohesin loading is unperturbed, binding to certain promoters such as the Protocadherin genes in brain is notably affected and alters gene expression. These results provide further support for the idea that developmental defects in CdLS are caused by deregulated transcription and not by malfunction of cohesion-related processes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Síndrome de Cornelia de Lange/patología , Modelos Animales de Enfermedad , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Ciclo Celular/genética , Supervivencia Celular , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Reparación del ADN , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/metabolismo , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Técnica del Anticuerpo Fluorescente , Heterocigoto , Hibridación Fluorescente in Situ , Ratones , Ratones Noqueados , Fenotipo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cohesinas
16.
J Biol Chem ; 286(20): 17870-8, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454523

RESUMEN

The ß-globin locus undergoes dynamic chromatin interaction changes in differentiating erythroid cells that are thought to be important for proper globin gene expression. However, the underlying mechanisms are unclear. The CCCTC-binding factor, CTCF, binds to the insulator elements at the 5' and 3' boundaries of the locus, but these sites were shown to be dispensable for globin gene activation. We found that, upon induction of differentiation, cohesin and the cohesin loading factor Nipped-B-like (Nipbl) bind to the locus control region (LCR) at the CTCF insulator and distal enhancer regions as well as at the specific target globin gene that undergoes activation upon differentiation. Nipbl-dependent cohesin binding is critical for long-range chromatin interactions, both between the CTCF insulator elements and between the LCR distal enhancer and the target gene. We show that the latter interaction is important for globin gene expression in vivo and in vitro. Furthermore, the results indicate that such cohesin-mediated chromatin interactions associated with gene regulation are sensitive to the partial reduction of Nipbl caused by heterozygous mutation. This provides the first direct evidence that Nipbl haploinsufficiency affects cohesin-mediated chromatin interactions and gene expression. Our results reveal that dynamic Nipbl/cohesin binding is critical for developmental chromatin organization and the gene activation function of the LCR in mammalian cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Elementos de Facilitación Genéticos/fisiología , Regulación de la Expresión Génica/fisiología , Elementos Aisladores/fisiología , Globinas beta/biosíntesis , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Humanos , Células K562 , Ratones , Mutación , Proteínas/genética , Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Globinas beta/genética , Cohesinas
17.
PLoS Genet ; 5(9): e1000650, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19763162

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a multi-organ system birth defects disorder linked, in at least half of cases, to heterozygous mutations in the NIPBL gene. In animals and fungi, orthologs of NIPBL regulate cohesin, a complex of proteins that is essential for chromosome cohesion and is also implicated in DNA repair and transcriptional regulation. Mice heterozygous for a gene-trap mutation in Nipbl were produced and exhibited defects characteristic of CdLS, including small size, craniofacial anomalies, microbrachycephaly, heart defects, hearing abnormalities, delayed bone maturation, reduced body fat, behavioral disturbances, and high mortality (75-80%) during the first weeks of life. These phenotypes arose despite a decrease in Nipbl transcript levels of only approximately 30%, implying extreme sensitivity of development to small changes in Nipbl activity. Gene expression profiling demonstrated that Nipbl deficiency leads to modest but significant transcriptional dysregulation of many genes. Expression changes at the protocadherin beta (Pcdhb) locus, as well as at other loci, support the view that NIPBL influences long-range chromosomal regulatory interactions. In addition, evidence is presented that reduced expression of genes involved in adipogenic differentiation may underlie the low amounts of body fat observed both in Nipbl+/- mice and in individuals with CdLS.


Asunto(s)
Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Regulación de la Expresión Génica , Heterocigoto , Especificidad de Órganos/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Animales Recién Nacidos , Desarrollo Óseo , Huesos/anomalías , Huesos/patología , Cadherinas/genética , Cadherinas/metabolismo , Proteínas de Ciclo Celular , Anomalías Craneofaciales/complicaciones , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Anomalías Craneofaciales/fisiopatología , Síndrome de Cornelia de Lange/complicaciones , Síndrome de Cornelia de Lange/fisiopatología , Modelos Animales de Enfermedad , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/fisiopatología , Ratones , Mutación/genética , Malformaciones del Sistema Nervioso/complicaciones , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/fisiopatología , Fenotipo , Intercambio de Cromátides Hermanas , Análisis de Supervivencia
18.
Ann N Y Acad Sci ; 1170: 21-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19686101

RESUMEN

The olfactory epithelium (OE) of the mouse is an excellent model system for studying principles of neural stem cell biology because of its well-defined neuronal lineage and its ability to regenerate throughout life. To approach the molecular mechanisms of stem cell regulation in the OE, we have focused on Foxg1, also known as brain factor 1, which is a member of the Forkhead transcription factor family. Foxg1(-/-) mice show major defects in the OE at birth, suggesting that Foxg1 plays an important role in OE development. We find that Foxg1 is expressed in cells within the basal compartment of the OE, the location where OE stem and progenitor cells are known to reside. Since FoxG1 is known to regulate proliferation of neuronal progenitor cells during telencephalon development, we performed bromodeoxyuridine pulse-chase labeling of Sox2-expressing neural stem cells during primary OE neurogenesis. We found the percentage of Sox2-expressing cells that retained bromodeoxyuridine was twice as high in Foxg1(-/-) OE cells as in the wild type, suggesting that these cells are delayed and/or halted in their development in the absence of Foxg1. Our findings suggest that the proliferation and/or subsequent differentiation of Sox2-expressing neural stem cells in the OE is regulated by Foxg1.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Mucosa Olfatoria/citología , Células Madre/citología , Animales , Bromodesoxiuridina , Factores de Transcripción Forkhead/genética , Hibridación in Situ , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Mucosa Olfatoria/inervación
19.
Development ; 136(9): 1453-64, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19297409

RESUMEN

Foxg1, a winged-helix transcription factor, promotes the development of anterior neural structures; in mice lacking Foxg1, development of the cerebral hemispheres and olfactory epithelium (OE) is severely reduced. It has been suggested that Foxg1 acts by positively regulating the expression of growth factors, such as Fgf8, which support neurogenesis. However, Foxg1 also binds Smad transcriptional complexes, allowing it to negatively regulate the effects of TGFbeta family ligands. Here, we provide evidence that this latter effect explains much of the ability of Foxg1 to drive neurogenesis in the OE. We show that Foxg1 is expressed in developing OE at the same time as the gene encoding growth differentiation factor 11 (Gdf11), a TGFbeta family member that mediates negative-feedback control of OE neurogenesis. Mutations in Gdf11 rescue, to a considerable degree, the major defects in Foxg1(-/-) OE, including the early, severe loss of neural precursors and olfactory receptor neurons, and the subsequent collapse of both neurogenesis and nasal cavity formation. Rescue is gene-dosage dependent, with loss of even one allele of Gdf11 restoring substantial neurogenesis. Notably, we find no evidence for a disruption of Fgf8 expression in Foxg1(-/-) OE. However, we do observe both a failure of expression of follistatin (Fst), which encodes a secreted Gdf11 antagonist normally expressed in and around OE, and an increase in the expression of Gdf11 itself within the remaining OE in these mutants. Fst expression is rescued in Foxg1(-/-);Gdf11(-/-) and Foxg1(-/-);Gdf11(+/-) mice. These data suggest that the influence of Foxg1 on Gdf11-mediated negative feedback of neurogenesis may be both direct and indirect. In addition, defects in development of the cerebral hemispheres in Foxg1(-/-) mice are not rescued by mutations in Gdf11, nor is Gdf11 expressed at high levels within these structures. Thus, the pro-neurogenic effects of Foxg1 are likely to be mediated through different signaling pathways in different parts of the nervous system.


Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Diferenciación de Crecimiento/antagonistas & inhibidores , Factores de Diferenciación de Crecimiento/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Bulbo Olfatorio/embriología , Bulbo Olfatorio/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo , Epitelio/embriología , Epitelio/inervación , Epitelio/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Folistatina/genética , Folistatina/metabolismo , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Diferenciación de Crecimiento/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Mucosa Nasal/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Transducción de Señal
20.
Biochem Biophys Res Commun ; 365(3): 562-7, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18022386

RESUMEN

AhR repressor (AhRR) is an AhR-related bHLH-PAS transcription factor. It is known to repress AhR transcription activity in a competitive manner. To examine AhRR functions in mice, we produced AhRR-deficient mice by gene knockout. AhRR(-/-) mice were born in normal Mendelian proportions, grew well, and were fertile. AhR(-/-) mice exhibited higher levels of Cyp1a1 (Cytochrome P450 1A1) mRNA induction in the skin, stomach and spleen than wild-type mice, while expression of Cyp1a1 mRNA was not significantly altered in the liver, lung, heart or other tissues, suggesting that "super-induction" of Cyp1a1 mRNA expression in AhRR(-/-) mice occurs in a tissue specific manner. AhRR(-/-) mice displayed a delayed response to skin carcinogenesis caused by benzo[a]pyrene. Since CYP1A1 is involved in the metabolic activation and detoxification of chemical carcinogens, these results suggest that overexpression of CYP1A1 shifts the balance of the metabolic activities in the skin of AhRR(-/-) mice in favor of the detoxification of carcinogens.


Asunto(s)
Benzo(a)pireno/toxicidad , Transformación Celular Neoplásica/genética , Citocromo P-450 CYP1A1/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Represoras/fisiología , Neoplasias Cutáneas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Citocromo P-450 CYP1A1/análisis , Citocromo P-450 CYP1A1/metabolismo , Expresión Génica , Marcación de Gen , Inactivación Metabólica/genética , Ratones , Ratones Mutantes , Proteínas Represoras/análisis , Proteínas Represoras/genética , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/patología , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...