Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766176

RESUMEN

Recombinant adeno-associated viral vectors (rAAV) hold an intrinsic ability to stimulate homologous recombination (AAV-HR) and are the most used in clinical settings for in vivo gene therapy. However, rAAVs also integrate throughout the genome. Here, we describe DNA-RNA immunoprecipitation sequencing (DRIP-seq) in murine HEPA1-6 hepatoma cells and whole murine liver to establish the similarities and differences in genomic R-loop formation in a transformed cell line and intact tissue. We show enhanced AAV-HR in mice upon genetic and pharmacological upregulation of R-loops. Selecting the highly expressed Albumin gene as a model locus for genome editing in both in vitro and in vivo experiments showed that the R-loop prone, 3' end of Albumin was efficiently edited by AAV-HR, whereas the upstream R-loop- deficient region did not result in detectable vector integration. In addition, we found a positive correlation between previously reported off-target rAAV integration sites and R-loop enriched genomic regions. Thus, we conclude that high levels of R-loops, present in highly transcribed genes, promote rAAV vector genome integration. These findings may shed light on potential mechanisms for improving the safety and efficacy of genome editing by modulating R-loops and may enhance our ability to predict regions most susceptible to off-target insertional mutagenesis by rAAV vectors.

2.
Mol Ther ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715361

RESUMEN

We investigated long-term human coagulation factor IX (huFIX) expression of a novel variant when delivered into mice and rhesus macaques and compared transduction efficiencies using two different adeno-associated virus (AAV) capsids. In hemophilic mice injected with KP1-packaged recombinant AAV (rAAV) expressing the hyperactive FIX variant specific activity plasma levels were 10-fold or 2-fold enhanced when compared with wild-type or Padua huFIX injected mice, respectively. In rhesus macaques AAV-LK03 capsid outperformed AAV-KP1 in terms of antigen expression and liver transduction. Two animals from each group showed sustained low-level huFIX expression at 3 months after administration, while one animal from each group lost huFIX mRNA and protein expression over time, despite comparable vector copies. We investigated whether epigenetic differences in the vector episomes could explain this loss of transcription. Cut&Tag analysis revealed lower levels of activating histone marks in the two animals that lost expression. When comparing rAAV genome associated histone modifications in rhesus macaques with those in mice injected with the same vector, the activating histone marks were starkly decreased in macaque-derived episomes. Differential epigenetic marking of AAV genomes may explain different expression profiles in mice and rhesus macaques, as well as the wide dose response variation observed in primates in both preclinical and human clinical trials.

3.
Nat Biotechnol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589662

RESUMEN

CRISPR-Cas9 paired with adeno-associated virus serotype 6 (AAV6) is among the most efficient tools for producing targeted gene knockins. Here, we report that this system can lead to frequent concatemeric insertions of the viral vector genome at the target site that are difficult to detect. Such errors can cause adverse and unreliable phenotypes that are antithetical to the goal of precision genome engineering. The concatemeric knockins occurred regardless of locus, vector concentration, cell line or cell type, including human pluripotent and hematopoietic stem cells. Although these highly abundant errors were found in more than half of the edited cells, they could not be readily detected by common analytical methods. We describe strategies to detect and thoroughly characterize the concatemeric viral vector insertions, and we highlight analytical pitfalls that mask their prevalence. We then describe strategies to prevent the concatemeric inserts by cutting the vector genome after transduction. This approach is compatible with established gene editing pipelines, enabling robust genetic knockins that are safer, more reliable and more reproducible.

4.
Mol Ther Methods Clin Dev ; 30: 413-428, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37663645

RESUMEN

Adeno-associated virus (AAV)-mediated gene transfer has shown promise in rescuing mouse models of genetic hearing loss, but how viral capsid and promoter selection affects efficacy is poorly characterized. Here, we tested combinations of AAVs and promoters to deliver Tmprss3, mutations in which are associated with hearing loss in humans. Tmprss3tm1/tm1 mice display severe cochlear hair cell degeneration, loss of auditory brainstem responses, and delayed loss of spiral ganglion neurons. Under the ubiquitous CAG promoter and AAV-KP1 capsid, Tmprss3 overexpression caused striking cytotoxicity in vitro and in vivo and failed to rescue degeneration or dysfunction of the Tmprss3tm1/tm1 cochlea. Reducing the dosage or using AAV-DJ-CAG-Tmprss3 diminished cytotoxicity without rescue of the Tmprss3tm1/tm1 cochlea. Finally, the combination of AAV-KP1 capsid and the EF1α promoter prevented cytotoxicity and reduced hair cell degeneration, loss of spiral ganglion neurons, and improved hearing thresholds in Tmprss3tm1/tm1 mice. Together, our study illustrates toxicity of exogenous genes and factors governing rescue efficiency, and suggests that cochlear gene therapy likely requires precisely targeted transgene expression.

5.
Front Immunol ; 14: 1105617, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153616

RESUMEN

Introduction: Use of adeno-associated virus (AAV) vectors is complicated by host immune responses that can limit transgene expression. Recent clinical trials using AAV vectors to deliver HIV broadly neutralizing antibodies (bNAbs) by intramuscular administration resulted in poor expression with anti-drug antibodies (ADA) responses against the bNAb. Methods: Here we compared the expression of, and ADA responses against, an anti-SIV antibody ITS01 when delivered by five different AAV capsids. We first evaluated ITS01 expression from AAV vectors three different 2A peptides. Rhesus macaques were selected for the study based on preexisiting neutralizing antibodies by evaluating serum samples in a neutralization assay against the five capsids used in the study. Macaques were intramuscularly administered AAV vectors at a 2.5x10^12 vg/kg over eight administration sites. ITS01 concentrations and anti-drug antibodies (ADA) were measured by ELISA and a neutralization assay was conducted to confirm ex vivo antibody potency. Results: We observed that ITS01 expressed three-fold more efficiently in mice from AAV vectors in which heavy and light-chain genes were separated by a P2A ribosomal skipping peptide, compared with those bearing F2A or T2A peptides. We then measured the preexisting neutralizing antibody responses against three traditional AAV capsids in 360 rhesus macaques and observed that 8%, 16%, and 42% were seronegative for AAV1, AAV8, and AAV9, respectively. Finally, we compared ITS01 expression in seronegative macaques intramuscularly transduced with AAV1, AAV8, or AAV9, or with the synthetic capsids AAV-NP22 or AAV-KP1. We observed at 30 weeks after administration that AAV9- and AAV1-delivered vectors expressed the highest concentrations of ITS01 (224 µg/mL, n=5, and 216 µg/mL, n=3, respectively). The remaining groups expressed an average of 35-73 µg/mL. Notably, ADA responses against ITS01 were observed in six of the 19 animals. Lastly, we demonstrated that the expressed ITS01 retained its neutralizing activity with nearly the same potency of purified recombinant protein. Discussion: Overall, these data suggest that the AAV9 capsid is a suitable choice for intramuscular expression of antibodies in nonhuman primates.


Asunto(s)
Anticuerpos Neutralizantes , Dependovirus , Animales , Ratones , Macaca mulatta , Dependovirus/genética , Transgenes/genética , Cápside
6.
Nat Commun ; 14(1): 2448, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117181

RESUMEN

Recombinant adeno-associated viral vectors (rAAVs) are among the most commonly used vehicles for in vivo based gene therapies. However, it is hard to predict which AAV capsid will provide the most robust expression in human subjects due to the observed discordance in vector-mediated transduction between species. In our study, we use a primate specific capsid, AAV-LK03, to demonstrate that the limitation of this capsid towards transduction of mouse cells is unrelated to cell entry and nuclear transport but rather due to depleted histone H3 chemical modifications related to active transcription, namely H3K4me3 and H3K27ac, on the vector DNA itself. A single-amino acid insertion into the AAV-LK03 capsid enables efficient transduction and the accumulation of active-related epigenetic marks on the vector chromatin in mouse without compromising transduction efficiency in human cells. Our study suggests that the capsid protein itself is involved in driving the epigenetic status of the vector genome, most likely during the process of uncoating. Programming viral chromatin states by capsid design may enable facile DNA transduction between vector and host species and ultimately lead to rational selection of AAV capsids for use in humans.


Asunto(s)
Proteínas de la Cápside , Cápside , Humanos , Ratones , Animales , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Transducción Genética , Dependovirus/metabolismo , Vectores Genéticos/genética , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética
8.
Mol Ther Nucleic Acids ; 31: 383-397, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36817723

RESUMEN

Adeno-associated viruses (AAVs) are commonly used for in vivo gene therapy. Nevertheless, the wide tropism that characterizes these vectors limits specific targeting to a particular cell type or tissue. Here, we developed new chemically modified AAV vectors (Nε-AAVs) displaying a single site substitution on the capsid surface for post-production vector engineering through biorthogonal copper-free click chemistry. We were able to identify AAV vectors that would tolerate the unnatural amino acid substitution on the capsid without disrupting their packaging efficiency. We functionalized the Nε-AAVs through conjugation with DNA (AS1411) or RNA (E3) aptamers or with a folic acid moiety (FA). E3-, AS1411-, and FA-AAVs showed on average a 3- to 9-fold increase in transduction compared with their non-conjugated counterparts in different cancer cell lines. Using specific competitors, we established ligand-specific transduction. In vivo studies confirmed the selective uptake of FA-AAV and AS1411-AAV without off-target transduction in peripheral organs. Overall, the high versatility of these novel Nε-AAVs might pave the way to tailoring gene therapy vectors toward specific types of cells both for ex vivo and in vivo applications.

9.
Mol Ther Methods Clin Dev ; 27: 73-88, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36186955

RESUMEN

A limitation for recombinant adeno-associated virus (rAAV)-mediated gene transfer into the central nervous system (CNS) is the low penetration of vectors across the human blood-brain barrier (BBB). High doses of intravenously delivered vector are required to reach the CNS, which has resulted in varying adverse effects. Moreover, selective transduction of various cell types might be important depending on the disorder being treated. To enhance BBB penetration and improve CNS cell selectivity, we screened an AAV capsid-shuffled library using an in vitro transwell BBB system with separate layers of human endothelial cells, primary astrocytes and/or human induced pluripotent stem cell-derived cortical neurons. After multiple passages through the transwell, we identified chimeric AAV capsids with enhanced penetration and improved transduction of astrocytes and/or neurons compared with wild-type capsids. We identified the amino acids (aa) from regions 451-470 of AAV2 associated with the capsids selected for neurons, and a combination of aa from regions 413-496 of AAV-rh10 and 538-598 of AAV3B/LK03 associated with capsids selected for astrocytes. A small interfering RNA screen identified several genes that affect transcytosis of AAV across the BBB. Our work supports the use of a human transwell system for selecting enhanced AAV capsids targeting the CNS and may allow for unraveling the underlying molecular mechanisms of BBB penetration.

10.
Mol Ther ; 30(8): 2646-2663, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35690906

RESUMEN

On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Vectores Genéticos/genética , Humanos , Ratones , Mutagénesis Insercional , Plásmidos , Transgenes , Integración Viral
11.
Front Genome Ed ; 4: 785698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359664

RESUMEN

Many inborn errors of metabolism require life-long treatments and, in severe conditions involving the liver, organ transplantation remains the only curative treatment. Non-integrative AAV-mediated gene therapy has shown efficacy in adult patients. However, treatment in pediatric or juvenile settings, or in conditions associated with hepatocyte proliferation, may result in rapid loss of episomal viral DNA and thus therapeutic efficacy. Re-administration of the therapeutic vector later in time may not be possible due to the presence of anti-AAV neutralizing antibodies. We have previously shown the permanent rescue of the neonatal lethality of a Crigler-Najjar mouse model by applying an integrative gene-therapy based approach. Here, we targeted the human coagulation factor IX (hFIX) cDNA into a hemophilia B mouse model. Two AAV8 vectors were used: a promoterless vector with two arms of homology for the albumin locus, and a vector carrying the CRISPR/SaCas9 and the sgRNA. Treatment of neonatal P2 wild-type mice resulted in supraphysiological levels of hFIX being stable 10 months after dosing. A single injection of the AAV vectors into neonatal FIX KO mice also resulted in the stable expression of above-normal levels of hFIX, reaching up to 150% of the human levels. Mice subjected to tail clip analysis showed a clotting capacity comparable to wild-type animals, thus demonstrating the rescue of the disease phenotype. Immunohistological analysis revealed clusters of hFIX-positive hepatocytes. When we tested the approach in adult FIX KO mice, we detected hFIX in plasma by ELISA and in the liver by western blot. However, the hFIX levels were not sufficient to significantly ameliorate the bleeding phenotype upon tail clip assay. Experiments conducted using a AAV donor vectors containing the eGFP or the hFIX cDNAs showed a higher recombination rate in P2 mice compared to adult animals. With this study, we demonstrate an alternative gene targeting strategy exploiting the use of the CRISPR/SaCas9 platform that can be potentially applied in the treatment of pediatric patients suffering from hemophilia, also supporting its application to other liver monogenic diseases. For the treatment of adult patients, further studies for the improvement of targeting efficiency are still required.

12.
Nat Biotechnol ; 40(8): 1285-1294, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35393561

RESUMEN

Homologous recombination (HR)-based gene therapy using adeno-associated viruses (AAV-HR) without nucleases has several advantages over classic gene therapy, especially the potential for permanent transgene expression. However, the low efficiency of AAV-HR remains a major limitation. Here, we tested a series of small-molecule compounds and found that ribonucleotide reductase (RNR) inhibitors substantially enhance AAV-HR efficiency in mouse and human liver cell lines approximately threefold. Short-term administration of the RNR inhibitor fludarabine increased the in vivo efficiency of both non-nuclease- and CRISPR/Cas9-mediated AAV-HR two- to sevenfold in the murine liver, without causing overt toxicity. Fludarabine administration induced transient DNA damage signaling in both proliferating and quiescent hepatocytes. Notably, the majority of AAV-HR events occurred in non-proliferating hepatocytes in both fludarabine-treated and control mice, suggesting that the induction of transient DNA repair signaling in non-dividing hepatocytes was responsible for enhancing AAV-HR efficiency in mice. These results suggest that use of a clinically approved RNR inhibitor can potentiate AAV-HR-based genome-editing therapeutics.


Asunto(s)
Sistemas CRISPR-Cas , Vectores Genéticos , Animales , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Endonucleasas/genética , Edición Génica/métodos , Recombinación Homóloga , Humanos , Ratones , Vidarabina/análogos & derivados
13.
Plast Reconstr Surg ; 149(1): 117-129, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757962

RESUMEN

BACKGROUND: Gene therapy is a promising treatment for protein deficiency disorders such as hemophilia B. However, low tissue selectivity and efficacy are limitations of systemic vector delivery. The authors hypothesized that selective transfection of rat superficial inferior epigastric artery flaps could provide systemic delivery of coagulation factor IX, preventing the need for systemic vector administration. METHODS: Minicircle DNA containing green fluorescent protein, firefly luciferase, and human coagulation factor IX was created. Vector constructs were validated by transfecting adipose-derived stromal cells isolated from Wistar rat superficial inferior epigastric artery flaps and evaluating transgene expression by fluorescence microscopy, bioluminescence, and enzyme-linked immunosorbent assay. Minicircle DNA luciferase (10 and 30 µg) was injected into murine (wild-type, C57/BL/6) inguinal fat pads (n = 3) and followed by in vivo bioluminescence imaging for 60 days. Wistar rat superficial inferior epigastric artery flaps were transfected with minicircle DNA human coagulation factor IX (n = 9) with plasma and tissue transgene expression measured by enzyme-linked immunosorbent assay at 2 and 4 weeks. RESULTS: Transfected adipose-derived stromal cells expressed green fluorescent protein for 30 days, luciferase for 43 days, and human coagulation factor IX (21.9 ± 1.2 ng/ml) for 28 days in vitro. In vivo murine studies demonstrated dose-dependence between minicircle DNA delivery and protein expression. Ex vivo rat superficial inferior epigastric artery flap transfection with minicircle DNA human coagulation factor IX showed systemic transgene expression at 2 (266.6 ± 23.4 ng/ml) and 4 weeks (290.1 ± 17.1 ng/ml) compared to control tissue (p < 0.0001). CONCLUSIONS: Rat superficial inferior epigastric artery flap transfection using minicircle DNA human coagulation factor IX resulted in systemic transgene detection, suggesting that selective flap or angiosome-based tissue transfection may be explored as a treatment for systemic protein deficiency disorders such as hemophilia B.


Asunto(s)
ADN/genética , Factor IX/genética , Células del Estroma/citología , Colgajos Quirúrgicos/irrigación sanguínea , Animales , Células Cultivadas , Factor IX/metabolismo , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Modelos Animales , Ratas , Ratas Wistar
14.
PLoS Genet ; 17(7): e1009675, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34324497

RESUMEN

Emerging evidence indicates that tRNA-derived small RNAs (tsRNAs) are involved in fine-tuning gene expression and become dysregulated in various cancers. We recently showed that the 22nt LeuCAG3´tsRNA from the 3´ end of tRNALeu is required for efficient translation of a ribosomal protein mRNA and ribosome biogenesis. Inactivation of this 3´tsRNA induced apoptosis in rapidly dividing cells and suppressed the growth of a patient-derived orthotopic hepatocellular carcinoma in mice. The mechanism involved in the generation of the 3´tsRNAs remains elusive and it is unclear if the 3´-ends of 3´tsRNAs are aminoacylated. Here we report an enzymatic method utilizing exonuclease T to determine the 3´charging status of tRNAs and tsRNAs. Our results showed that the LeuCAG3´tsRNA, and two other 3´tsRNAs are fully aminoacylated. When the leucyl-tRNA synthetase (LARS1) was inhibited, there was no change in the total tRNALeu concentration but a reduction in both the charged tRNALeu and LeuCAG3´tsRNA, suggesting the 3´tsRNAs are fully charged and originated solely from the charged mature tRNA. Altering LARS1 expression or the expression of various tRNALeu mutants were also shown to affect the generation of the LeuCAG3´tsRNA further suggesting they are created in a highly regulated process. The fact that the 3´tsRNAs are aminoacylated and their production is regulated provides additional insights into their importance in post-transcriptional gene regulation that includes coordinating the production of the protein synthetic machinery.


Asunto(s)
ARN de Transferencia/biosíntesis , ARN de Transferencia/genética , Aminoacilación de ARN de Transferencia/genética , Aminoácidos/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Leucina/genética , Leucina/metabolismo , Procesamiento Postranscripcional del ARN , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas , Aminoacilación de ARN de Transferencia/fisiología
15.
Nat Commun ; 12(1): 3397, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099665

RESUMEN

It is known that an RNA's structure determines its biological function, yet current RNA structure probing methods only capture partial structure information. The ability to measure intact (i.e., full length) RNA structures will facilitate investigations of the functions and regulation mechanisms of small RNAs and identify short fragments of functional sites. Here, we present icSHAPE-MaP, an approach combining in vivo selective 2'-hydroxyl acylation and mutational profiling to probe intact RNA structures. We further showcase the RNA structural landscape of substrates bound by human Dicer based on the combination of RNA immunoprecipitation pull-down and icSHAPE-MaP small RNA structural profiling. We discover distinct structural categories of Dicer substrates in correlation to both their binding affinity and cleavage efficiency. And by tertiary structural modeling constrained by icSHAPE-MaP RNA structural data, we find the spatial distance measuring as an influential parameter for Dicer cleavage-site selection.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Conformación de Ácido Nucleico , ARN/química , Ribonucleasa III/metabolismo , Biología Computacional , ARN Helicasas DEAD-box/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , ARN/genética , ARN/metabolismo , Sondas ARN , RNA-Seq , Ribonucleasa III/genética , Especificidad por Sustrato/genética
16.
Mol Ther ; 29(3): 1016-1027, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33678249

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors have the unique property of being able to perform genomic targeted integration (TI) without inducing a double-strand break (DSB). In order to improve our understanding of the mechanism behind TI mediated by AAV and improve its efficiency, we performed an unbiased genetic screen in human cells using a promoterless AAV-homologous recombination (AAV-HR) vector system. We identified that the inhibition of the Fanconi anemia complementation group M (FANCM) protein enhanced AAV-HR-mediated TI efficiencies in different cultured human cells by ∼6- to 9-fold. The combined knockdown of the FANCM and two proteins also associated with the FANCM complex, RecQ-mediated genome instability 1 (RMI1) and Bloom DNA helicase (BLM) from the BLM-topoisomerase IIIα (TOP3A)-RMI (BTR) dissolvase complex (RMI1, having also been identified in our screen), led to the enhancement of AAV-HR-mediated TI up to ∼17 times. AAV-HR-mediated TI in the presence of a nuclease (CRISPR-Cas9) was also increased by ∼1.5- to 2-fold in FANCM and RMI1 knockout cells, respectively. Furthermore, knockdown of FANCM in human CD34+ hematopoietic stem and progenitor cells (HSPCs) increased AAV-HR-mediated TI by ∼3.5-fold. This study expands our knowledge on the mechanisms related to AAV-mediated TI, and it highlights new pathways that might be manipulated for future improvements in AAV-HR-mediated TI.


Asunto(s)
Sistemas CRISPR-Cas , ADN Helicasas/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Dependovirus/genética , Edición Génica , Células Madre Hematopoyéticas/metabolismo , RecQ Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Vectores Genéticos , Células HeLa , Células Madre Hematopoyéticas/citología , Recombinación Homóloga , Humanos , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
17.
Hepatology ; 73(6): 2223-2237, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32976669

RESUMEN

BACKGROUND AND AIMS: Adeno-associated viral (AAV) gene therapy has shown great promise as an alternative treatment for metabolic disorders managed using liver transplantation, but remains limited by transgene loss and genotoxicity. Our study aims to test an AAV vector with a promoterless integrating cassette, designed to provide sustained hepatic transgene expression and reduced toxicity in comparison to canonical AAV therapy. APPROACH AND RESULTS: Our AAV vector was designed to insert a methylmalonyl-CoA mutase (MMUT) transgene into the 3' end of the albumin locus and tested in mouse models of methylmalonic acidemia (MMA). After neonatal delivery, we longitudinally evaluated hepatic transgene expression, plasma levels of methylmalonate, and the MMA biomarker, fibroblast growth factor 21 (Fgf21), as well as integration of MMUT in the albumin locus. At necropsy, we surveyed for AAV-related hepatocellular carcinoma (HCC) in all treated MMA mice and control littermates. AAV-mediated genome editing of MMUT into the albumin locus resulted in permanent hepatic correction in MMA mouse models, which was accompanied by decreased levels of methylmalonate and Fgf21, and improved survival without HCC. With time, levels of transgene expression increased and methylmalonate progressively decreased, whereas the number of albumin-MMUT integrations and corrected hepatocytes in MMA mice increased, but not in similarly treated wild-type animals. Additionally, expression of MMUT in the setting of MMA conferred a selective growth advantage upon edited cells, which potentiates the therapeutic response. CONCLUSIONS: In conclusion, our findings demonstrate that AAV-mediated, promoterless, nuclease-free genome editing at the albumin locus provides safe and durable therapeutic benefit in neonatally treated MMA mice.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/terapia , Dependovirus/genética , Edición Génica/métodos , Terapia Genética/métodos , Metilmalonil-CoA Mutasa/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/sangre , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/sangre , Hepatocitos , Neoplasias Hepáticas/patología , Trasplante de Hígado , Malonatos/sangre , Metilmalonil-CoA Mutasa/genética , Ratones , Ratones Endogámicos C57BL
18.
Mol Ther ; 29(3): 1028-1046, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33248247

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors have the unique ability to promote targeted integration of transgenes via homologous recombination at specified genomic sites, reaching frequencies of 0.1%-1%. We studied genomic parameters that influence targeting efficiencies on a large scale. To do this, we generated more than 1,000 engineered, doxycycline-inducible target sites in the human HAP1 cell line and infected this polyclonal population with a library of AAV-DJ targeting vectors, with each carrying a unique barcode. The heterogeneity of barcode integration at each target site provided an assessment of targeting efficiency at that locus. We compared targeting efficiency with and without target site transcription for identical chromosomal positions. Targeting efficiency was enhanced by target site transcription, while chromatin accessibility was associated with an increased likelihood of targeting. ChromHMM chromatin states characterizing transcription and enhancers in wild-type K562 cells were also associated with increased AAV-HR efficiency with and without target site transcription, respectively. Furthermore, the amenability of a site to targeting was influenced by the endogenous transcriptional level of intersecting genes. These results define important parameters that may not only assist in designing optimal targeting vectors for genome editing, but also provide new insights into the mechanism of AAV-mediated homologous recombination.


Asunto(s)
Cromatina/genética , Dependovirus/genética , Marcación de Gen/métodos , Técnicas de Transferencia de Gen/estadística & datos numéricos , Vectores Genéticos/genética , Recombinación Homóloga , Transgenes , Vectores Genéticos/administración & dosificación , Humanos , Células K562
19.
Mol Ther Methods Clin Dev ; 19: 496-506, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33313337

RESUMEN

Adeno-associated virus (AAV) is one of the most commonly used vectors for gene therapy, and the applications for AAV-delivered therapies are numerous. However, the current state of technology is limited by the low efficiency with which most AAV vectors transduce skeletal muscle tissue. We demonstrate that vector efficiency can be enhanced by modifying the AAV capsid with a peptide that binds a receptor highly expressed in muscle tissue. When an insulin-mimetic peptide, S519, previously characterized for its high affinity to insulin receptor (IR), was inserted into the capsid, the AAV9 transduction efficiency of IR-expressing cell lines as well as differentiated primary human muscle cells was dramatically enhanced. This vector also exhibited efficient transduction of mouse muscle in vivo, resulting in up to 18-fold enhancement over AAV9. Owing to its superior transduction efficiency in skeletal muscle, we named this vector "enhanced AAV9" (eAAV9). We also found that the modification enhanced the transduction efficiency of several other AAV serotypes. Together, these data show that AAV transduction of skeletal muscle can be improved by targeting IR. They also show the broad utility of this modular strategy and suggest that it could also be applied to next-generation vectors that have yet to be engineered.

20.
Mol Ther ; 28(11): 2340-2357, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32956625

RESUMEN

Decades after identification as essential for protein synthesis, transfer RNAs (tRNAs) have been implicated in various cellular processes beyond translation. tRNA-derived small RNAs (tsRNAs), referred to as tRNA-derived fragments (tRFs) or tRNA-derived, stress-induced RNAs (tiRNAs), are produced by cleavage at different sites from mature or pre-tRNAs. They are classified into six major types representing potentially thousands of unique sequences and have been implicated to play a wide variety of regulatory roles in maintaining normal homeostasis, cancer cell viability, tumorigenesis, ribosome biogenesis, chromatin remodeling, translational regulation, intergenerational inheritance, retrotransposon regulation, and viral replication. However, the detailed mechanisms governing these processes remain unknown. Aberrant expression of tsRNAs is found in various human disease conditions, suggesting that a further understanding of the regulatory role of tsRNAs will assist in identifying novel biomarkers, potential therapeutic targets, and gene-regulatory tools. Here, we highlight the classification, biogenesis, and biological role of tsRNAs in regulatory mechanisms of normal and disease states.


Asunto(s)
ARN Pequeño no Traducido/genética , ARN de Transferencia/genética , Biomarcadores , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Ensamble y Desensamble de Cromatina , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Homeostasis , Humanos , ARN Pequeño no Traducido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...