Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(15): 3083-3096.e6, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37379843

RESUMEN

Macropinocytosis is a conserved endocytic process by which cells engulf droplets of medium into micron-sized vesicles. We use light-sheet microscopy to define an underlying set of principles by which macropinocytic cups are shaped and closed in Dictyostelium amoebae. Cups form around domains of PIP3 stretching almost to their lip and are supported by a specialized F-actin scaffold from lip to base. They are shaped by a ring of actin polymerization created by recruiting Scar/WAVE and Arp2/3 around PIP3 domains, but how cups evolve over time to close and form a vesicle is unknown. Custom 3D analysis shows that PIP3 domains expand from small origins, capturing new membrane into the cup, and crucially, that cups close when domain expansion stalls. We show that cups can close in two ways: either at the lip, by inwardly directed actin polymerization, or the base, by stretching and delamination of the membrane. This provides the basis for a conceptual mechanism whereby closure is brought about by a combination of stalled cup expansion, continued actin polymerization at the lip, and membrane tension. We test this through the use of a biophysical model, which can recapitulate both forms of cup closure and explain how 3D cup structures evolve over time to mediate engulfment.


Asunto(s)
Actinas , Dictyostelium , Estructuras de la Membrana Celular , Citoesqueleto de Actina , Endocitosis
2.
Proc Biol Sci ; 289(1983): 20221176, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36126683

RESUMEN

The soil is a rich ecosystem where many ecological interactions are mediated by small molecules, and in which amoebae are low-level predators and also prey. The social amoeba Dictyostelium discoideum has a high genomic potential for producing polyketides to mediate its ecological interactions, including the unique 'Steely' enzymes, consisting of a fusion between a fatty acid synthase and a chalcone synthase. We report here that D. discoideum further increases its polyketide potential by using the StlB Steely enzyme, and a downstream chlorinating enzyme, to make both a chlorinated signal molecule, DIF-1, during its multi-cellular development, and a set of abundant polyketides in terminally differentiated stalk cells. We identify one of these as a chlorinated dibenzofuran with potent anti-bacterial activity. To do this, StlB switches expression from prespore to stalk cells in late development and is cleaved to release the chalcone synthase domain. Expression of this domain alone in StlB null cells allows synthesis of the stalk-associated, chlorinated polyketides. Thus, by altered expression and processing of StlB, cells make first a signal molecule, and then abundant secondary metabolites, which we speculate help to protect the mature spores from bacterial infection.


Asunto(s)
Dictyostelium , Policétidos , Dibenzofuranos Policlorados/metabolismo , Dictyostelium/genética , Ecosistema , Ácido Graso Sintasas/metabolismo , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Suelo
3.
Subcell Biochem ; 98: 41-59, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35378702

RESUMEN

Macropinocytosis is a relatively unexplored form of large-scale endocytosis driven by the actin cytoskeleton. Dictyostelium amoebae form macropinosomes from cups extended from the plasma membrane, then digest their contents and absorb the nutrients in the endo-lysosomal system. They use macropinocytosis for feeding, maintaining a high rate of fluid uptake that makes assay and experimentation easy. Mutants collected over the years identify cytoskeletal and signalling proteins required for macropinocytosis. Cups are organized around plasma membrane domains of intense PIP3, Ras and Rac signalling, proper formation of which also depends on the RasGAPs NF1 and RGBARG, PTEN, the PIP3-regulated protein kinases Akt and SGK and their activators PDK1 and TORC2, Rho proteins, plus other components yet to be identified. This PIP3 domain directs dendritic actin polymerization to the extending lip of macropinocytic cups by recruiting a ring of the SCAR/WAVE complex around itself and thus activating the Arp2/3 complex. The dynamics of PIP3 domains are proposed to shape macropinocytic cups from start to finish. The role of the Ras-PI3-kinase module in organizing feeding structures in unicellular organisms most likely predates its adoption into growth factor signalling, suggesting an evolutionary origin for growth factor signalling.


Asunto(s)
Amoeba , Dictyostelium , Citoesqueleto de Actina/metabolismo , Amoeba/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pinocitosis
4.
Cells Dev ; 168: 203713, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34175511

RESUMEN

Macropinocytosis is a form of endocytosis performed by ruffles and cups of the plasma membrane. These close to entrap droplets of medium into micron-sized vesicles, which are trafficked through the endocytic system, their contents digested and useful products absorbed. Macropinocytosis is constitutive in certain immune cells and stimulated in many other cells by growth factors. It occurs across the animal kingdom and in amoebae, implying a deep evolutionary history. Its scientific history goes back 100 years, but increasingly work is focused on its medical importance in the immune system, cancer cell feeding, and as a backdoor into cells for viruses and drugs. Macropinocytosis is driven by the actin cytoskeleton whose dynamics can be appreciated with lattice light sheet microscopy: this reveals a surprising variety of routes for forming macropinosomes. In Dictyostelium amoebae, macropinocytic cups are organized around domains of PIP3 and active Ras and Rac in the plasma membrane. These attract activators of the Arp2/3 complex to their periphery, creating rings of actin polymerization that shape the cups. The size of PIP3 domains is controlled by RasGAPs, such as NF1, and the lipid phosphatase, PTEN. It is likely that domain dynamics determine the shape, evolution and closing of macropinocytic structures.


Asunto(s)
Amoeba , Dictyostelium , Citoesqueleto de Actina/metabolismo , Animales , Biología , Dictyostelium/metabolismo , Endocitosis , Pinocitosis
5.
Curr Biol ; 30(15): R883-R885, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750349

RESUMEN

Macropinocytic cups enable cells to take up droplets of medium into internal vesicles. These cups are formed by the actin cytoskeleton around signaling patches of Ras, Rac and the phosphoinositide PIP3 in the plasma membrane. New work now describes a Ras regulator that controls both the size and efficiency of these patches.


Asunto(s)
Endocitosis , Pinocitosis , Bacterias , Estructuras de la Membrana Celular , Fagocitosis
6.
Proc Natl Acad Sci U S A ; 117(5): 2506-2512, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964823

RESUMEN

Blebs and pseudopods can both power cell migration, with blebs often favored in tissues, where cells encounter increased mechanical resistance. To investigate how migrating cells detect and respond to mechanical forces, we used a "cell squasher" to apply uniaxial pressure to Dictyostelium cells chemotaxing under soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained shift to movement with blebs rather than pseudopods. Cells are flattened under load and lose volume; the actin cytoskeleton is reorganized, with myosin II recruited to the cortex, which may pressurize the cytoplasm for blebbing. The transition to bleb-driven motility requires extracellular calcium and is accompanied by increased cytosolic calcium. It is largely abrogated in cells lacking the Piezo stretch-operated channel; under load, these cells persist in using pseudopods and chemotax poorly. We propose that migrating cells sense pressure through Piezo, which mediates calcium influx, directing movement with blebs instead of pseudopods.


Asunto(s)
Dictyostelium/citología , Dictyostelium/metabolismo , Canales Iónicos/metabolismo , Proteínas Protozoarias/metabolismo , Seudópodos/metabolismo , Fenómenos Biomecánicos , Movimiento Celular , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Dictyostelium/química , Dictyostelium/genética , Canales Iónicos/genética , Mecanotransducción Celular , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Presión , Proteínas Protozoarias/genética , Seudópodos/genética
7.
Int J Dev Biol ; 63(8-9-10): 473-483, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31840785

RESUMEN

Macropinocytosis is used by a variety of amoebae for feeding on liquid medium. The amoebae project cups and ruffles from their plasma membrane, driven by actin polymerization, and eventually fuse these back to the membrane, entrapping droplets of medium into internal vesicles. These vesicles are of up to several microns in diameter and are processed through the lysosomal digestive system to extract nutrients. Recognizably the same process is used in metazoan cells for a number of medically important purposes, including the pathological growth of cancer cells. We describe the discovery of macropinocytosis in Dictyostelium amoebae, its genetic regulation by the NF1 RasGAP, and the tools available for its investigation. Work on Dictyostelium over the last 30 years has identified many genes that may be important for macropinocytosis, which are listed at dictyBase, and give a basis for mechanistic studies. We argue that the actin cytoskeleton is organized for macropinocytosis by a signalling patch of PIP3 and active Ras and Rac, together with their regulatory proteins and effectors, including the protein kinases Akt and SGK. The Scar/WAVE complex is recruited to the periphery of this patch, triggering the formation of a hollow ring of protrusive actin polymerization, and eventually a macropinocytic cup. Major problems to be addressed include: the dynamics sustaining macropinocytic patches and the mechanism of Scar/WAVE recruitment; the mechanisms of cup closure and of membrane fusion; the ecological situations where amoebae feed by macropinocytosis; and the evolutionary relationship between macropinocytosis and growth factor signalling.


Asunto(s)
Dictyostelium/fisiología , Pinocitosis , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Membrana Celular/metabolismo , Dictyostelium/genética , Lisosomas/metabolismo , Microscopía , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/metabolismo , Proteínas ras/metabolismo
8.
Philos Trans R Soc Lond B Biol Sci ; 374(1765): 20180158, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30967007

RESUMEN

In macropinocytosis, cells take up micrometre-sized droplets of medium into internal vesicles. These vesicles are acidified and fused to lysosomes, their contents digested and useful compounds extracted. Indigestible contents can be exocytosed. Macropinocytosis has been known for approaching 100 years and is described in both metazoa and amoebae, but not in plants or fungi. Its evolutionary origin goes back to at least the common ancestor of the amoebozoa and opisthokonts, with apparent secondary loss from fungi. The primary function of macropinocytosis in amoebae and some cancer cells is feeding, but the conserved processing pathway for macropinosomes, which involves shrinkage and the retrieval of membrane to the cell surface, has been adapted in immune cells for antigen presentation. Macropinocytic cups are large actin-driven processes, closely related to phagocytic cups and pseudopods and appear to be organized around a conserved signalling patch of PIP3, active Ras and active Rac that directs actin polymerization to its periphery. Patches can form spontaneously and must be sustained by excitable kinetics with strong cooperation from the actin cytoskeleton. Growth-factor signalling shares core components with macropinocytosis, based around phosphatidylinositol 3-kinase (PI3-kinase), and we suggest that it evolved to take control of ancient feeding structures through a coupled growth factor receptor. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.


Asunto(s)
Evolución Biológica , Pinocitosis/fisiología , Transducción de Señal/fisiología , Amebozoos/fisiología , Animales , Humanos
9.
Philos Trans R Soc Lond B Biol Sci ; 374(1765): 20180150, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30967009

RESUMEN

Macropinocytosis-the large-scale, non-specific uptake of fluid by cells-is used by Dictyostelium discoideum amoebae to obtain nutrients. These cells form circular ruffles around regions of membrane defined by a patch of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and the activated forms of the small G-proteins Ras and Rac. When this ruffle closes, a vesicle of the medium is delivered to the cell interior for further processing. It is accepted that PIP3 is required for efficient macropinocytosis. Here, we assess the roles of Ras and Rac in Dictyostelium macropinocytosis. Gain-of-function experiments show that macropinocytosis is stimulated by persistent Ras activation and genetic analysis suggests that RasG and RasS are the key Ras proteins involved. Among the activating guanine exchange factors (GEFs), GefF is implicated in macropinocytosis by an insertional mutant. The individual roles of Rho family proteins are little understood but activation of at least some may be independent of PIP3. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.


Asunto(s)
Dictyostelium/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología , Pinocitosis/fisiología
10.
J Vis Exp ; (143)2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30735174

RESUMEN

Dictyostelium discoideum is an intriguing model organism for the study of cell differentiation processes during development, cell signaling, and other important cellular biology questions. The technologies available to genetically manipulate Dictyostelium cells are well-developed. Transfections can be performed using different selectable markers and marker re-cycling, including homologous recombination and insertional mutagenesis. This is supported by a well-annotated genome. However, these approaches are optimized for axenic cell lines growing in liquid cultures and are difficult to apply to non-axenic wild-type cells, which feed only on bacteria. The mutations that are present in axenic strains disturb Ras signaling, causing excessive macropinocytosis required for feeding, and impair cell migration, which confounds the interpretation of signal transduction and chemotaxis experiments in those strains. Earlier attempts to genetically manipulate non-axenic cells have lacked efficiency and required complex experimental procedures. We have developed a simple transfection protocol that, for the first time, overcomes these limitations. Those series of large improvements to Dictyostelium molecular genetics allow wild-type cells to be manipulated as easily as standard laboratory strains. In addition to the advantages for studying uncorrupted signaling and motility processes, mutants that disrupt macropinocytosis-based growth can now be readily isolated. Furthermore, the entire transfection workflow is greatly accelerated, with recombinant cells that can be generated in days rather than weeks. Another advantage is that molecular genetics can further be performed with freshly isolated wild-type Dictyostelium samples from the environment. This can help to extend the scope of approaches used in these research areas.


Asunto(s)
Bacterias/crecimiento & desarrollo , Quimiotaxis , Dictyostelium/crecimiento & desarrollo , Ingeniería Genética/métodos , Pinocitosis/fisiología , Bacterias/genética , Dictyostelium/genética , Recombinación Homóloga , Mutagénesis Insercional , Mutación , Transducción de Señal
11.
Dev Cell ; 48(4): 491-505.e9, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30612939

RESUMEN

Signaling from chemoattractant receptors activates the cytoskeleton of crawling cells for chemotaxis. We show using phosphoproteomics that different chemoattractants cause phosphorylation of the same core set of around 80 proteins in Dictyostelium cells. Strikingly, the majority of these are phosphorylated at an [S/T]PR motif by the atypical MAP kinase ErkB. Unlike most chemotactic responses, ErkB phosphorylations are persistent and do not adapt to sustained stimulation with chemoattractant. ErkB integrates dynamic autophosphorylation with chemotactic signaling through G-protein-coupled receptors. Downstream, our phosphoproteomics data define a broad panel of regulators of chemotaxis. Surprisingly, targets are almost exclusively other signaling proteins, rather than cytoskeletal components, revealing ErkB as a regulator of regulators rather than acting directly on the motility machinery. ErkB null cells migrate slowly and orientate poorly over broad dynamic ranges of chemoattractant. Our data indicate a central role for ErkB and its substrates in directing chemotaxis.


Asunto(s)
Quimiotaxis/fisiología , AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Factores Quimiotácticos/metabolismo , Citoesqueleto/metabolismo , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
12.
J Cell Sci ; 132(2)2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30617109

RESUMEN

Macropinocytosis is an actin-driven process of large-scale and non-specific fluid uptake used for feeding by some cancer cells and the macropinocytosis model organism Dictyostelium discoideum In Dictyostelium, macropinocytic cups are organized by 'macropinocytic patches' in the plasma membrane. These contain activated Ras, Rac and phospholipid PIP3, and direct actin polymerization to their periphery. We show that a Dictyostelium Akt (PkbA) and an SGK (PkbR1) protein kinase act downstream of PIP3 and, together, are nearly essential for fluid uptake. This pathway enables the formation of larger macropinocytic patches and macropinosomes, thereby dramatically increasing fluid uptake. Through phosphoproteomics, we identify a RhoGAP, GacG, as a PkbA and PkbR1 target, and show that it is required for efficient macropinocytosis and expansion of macropinocytic patches. The function of Akt and SGK in cell feeding through control of macropinosome size has implications for cancer cell biology.


Asunto(s)
Dictyostelium/enzimología , Pinocitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Protozoarias/metabolismo , Dictyostelium/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Protozoarias/genética
13.
J Vis Exp ; (139)2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30247467

RESUMEN

Large-scale non-specific fluid uptake by macropinocytosis is important for the proliferation of certain cancer cells, antigen sampling, host cell invasion and the spread of neurodegenerative diseases. The commonly used laboratory strains of the amoeba Dictyostelium discoideum have extremely high fluid uptake rates when grown in nutrient medium, over 90% of which is due to macropinocytosis. In addition, many of the known core components of mammalian macropinocytosis are also present, making it an excellent model system for studying macropinocytosis. Here, the standard technique to measure internalized fluid using fluorescent dextran as a label is adapted to a 96-well plate format, with the samples analyzed by flow cytometry using a high-throughput sampling (HTS) attachment. Cells are fed non-quenchable fluorescent dextran for a pre-determined length of time, washed by immersion in ice-cold buffer and detached using 5 mM sodium azide, which also stops exocytosis. Cells in each well are then analyzed by flow cytometry. The method can also be adapted to measure membrane uptake and phagocytosis of fluorescent beads or bacteria. This method was designed to allow measurement of fluid uptake by Dictyostelium in a high-throughput, labor and resource efficient manner. It allows simultaneous comparison of multiple strains (e.g. knockout mutants of a gene) and conditions (e.g. cells in different media or treated with different concentrations of inhibitor) in parallel and simplifies time-courses.


Asunto(s)
Dictyostelium/citología , Citometría de Flujo/métodos , Pinocitosis , Animales , Dictyostelium/metabolismo
14.
PLoS One ; 13(5): e0196809, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29847546

RESUMEN

Dictyostelium has a mature technology for molecular-genetic manipulation based around transfection using several different selectable markers, marker re-cycling, homologous recombination and insertional mutagenesis, all supported by a well-annotated genome. However this technology is optimized for mutant, axenic cells that, unlike non-axenic wild type, can grow in liquid medium. There is a pressing need for methods to manipulate wild type cells and ones with defects in macropinocytosis, neither of which can grow in liquid media. Here we present a panel of molecular genetic techniques based on the selection of Dictyostelium transfectants by growth on bacteria rather than liquid media. As well as extending the range of strains that can be manipulated, these techniques are faster than conventional methods, often giving usable numbers of transfected cells within a few days. The methods and plasmids described here allow efficient transfection with extrachromosomal vectors, as well as chromosomal integration at a 'safe haven' for relatively uniform cell-to-cell expression, efficient gene knock-in and knock-out and an inducible expression system. We have thus created a complete new system for the genetic manipulation of Dictyostelium cells that no longer requires cell feeding on liquid media.


Asunto(s)
Dictyostelium/genética , Técnicas de Sustitución del Gen/métodos , Ingeniería Genética/métodos , Vectores Genéticos/genética , Recombinación Homóloga/genética , Mutagénesis Insercional/genética , Mutación/genética , Pinocitosis/genética , Plásmidos/genética , Transfección/métodos
15.
Curr Biol ; 28(6): 995-1004.e3, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29526589

RESUMEN

Attractive and repulsive cell guidance is essential for animal life and important in disease. Cell migration toward attractants dominates studies [1-8], but migration away from repellents is important in biology yet relatively little studied [5, 9, 10]. It is widely held that cells initiate migration by protrusion of their front [11-15], yet this has not been explicitly tested for cell guidance because cell margin displacement at opposite ends of the cell has not been distinguished for any cue. We argue that protrusion of the front, retraction of the rear, or both together could in principle break cell symmetry and start migration in response to guidance cues [16]. Here, we find in the Dictyostelium model [6] that an attractant-cAMP-breaks symmetry by causing protrusion of the front of the cell, whereas its repellent analog-8CPT-breaks symmetry by causing retraction of the rear. Protrusion of the front of these cells in response to cAMP starts with local actin filament assembly, while the delayed retraction of the rear is independent of both myosin II polarization and of motor-based contractility. On the contrary, myosin II accumulates locally in the rear of the cell in response to 8CPT, anticipating retraction and required for it, while local actin assembly is delayed and couples to delayed protrusion at the front. These data reveal an important new concept in the understanding of cell guidance.


Asunto(s)
Movimiento Celular/fisiología , Dictyostelium/metabolismo , Citoesqueleto de Actina/fisiología , Actinas/fisiología , Polaridad Celular/fisiología , Células Quimiorreceptoras/fisiología , Señales (Psicología) , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Citoesqueleto , Miosina Tipo II/fisiología
16.
J Cell Sci ; 131(6)2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29440238

RESUMEN

Macropinocytosis is a conserved endocytic process used by Dictyostelium amoebae for feeding on liquid medium. To further Dictyostelium as a model for macropinocytosis, we developed a high-throughput flow cytometry assay to measure macropinocytosis, and used it to identify inhibitors and investigate the physiological regulation of macropinocytosis. Dictyostelium has two feeding states: phagocytic and macropinocytic. When cells are switched from phagocytic growth on bacteria to liquid media, the rate of macropinocytosis slowly increases, due to increased size and frequency of macropinosomes. Upregulation is triggered by a minimal medium containing three amino acids plus glucose and likely depends on macropinocytosis itself. The presence of bacteria suppresses macropinocytosis while their product, folate, partially suppresses upregulation of macropinocytosis. Starvation, which initiates development, does not of itself suppress macropinocytosis: this can continue in isolated cells, but is shut down by a conditioned-medium factor or activation of PKA signalling. Thus macropinocytosis is a facultative ability of Dictyostelium cells, regulated by environmental conditions that are identified here.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Dictyostelium/crecimiento & desarrollo , Dictyostelium/fisiología , Pinocitosis , Aminoácidos/metabolismo , Dictyostelium/genética , Glucosa/metabolismo , Fagocitosis , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
17.
Biochem J ; 475(3): 643-648, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29444849

RESUMEN

In a role distinct from and perhaps more ancient than that in signal transduction, PIP3 and Ras help to spatially organize the actin cytoskeleton into macropinocytic cups. These large endocytic structures are extended by actin polymerization from the cell surface and have at their core an intense patch of active Ras and PIP3, around which actin polymerizes, creating cup-shaped projections. We hypothesize that active Ras and PIP3 self-amplify within macropinocytic cups, in a way that depends on the structural integrity of the cup. Signalling that triggers macropinocytosis may therefore be amplified downstream in a way that depends on macropinocytosis. This argument provides a context for recent findings that signalling to Akt (an effector of PIP3) is sensitive to cytoskeletal and macropinocytic inhibitors.


Asunto(s)
Citoesqueleto de Actina/genética , Pinocitosis/genética , Proteínas Proto-Oncogénicas c-akt/genética , Citoesqueleto de Actina/química , Membrana Celular/genética , Dictyostelium/genética , Humanos , Proteínas Proto-Oncogénicas c-akt/química , Transducción de Señal/genética
18.
Sci Rep ; 7(1): 6692, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28751725

RESUMEN

Cells often employ fast, pressure-driven blebs to move through tissues or against mechanical resistance, but how bleb sites are selected and directed to the cell front remains an open question. Previously, we found that chemotaxing Dictyostelium cells preferentially bleb from concave regions, where membrane tension facilitates membrane-cortex detachment. Now, through a novel modeling approach based on actual cell contours, we use cell geometry to predict where blebs will form in migrating cells. We find that cell geometry alone, and by implication, physical forces in the membrane, is sufficient to predict the location of blebs in rounded cells moving in a highly resistive environment. The model is less successful with more polarized cells moving against less resistance, but can be greatly improved by positing a front-to-back gradient in membrane-cortex adhesion. In accord with this prediction, we find that Talin, which links membrane and cortex, forms such a front-to-back gradient. Thus our model provides a means of dissecting out the role of physical forces in controlling where blebs form, and shows that in certain circumstances they could be the major determining factor.

19.
Mol Biol Cell ; 28(6): 809-816, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28122819

RESUMEN

The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, but mechanics is likely to be involved. Because mechanical conditions are often controlled by modifying the composition of the environment, separating chemical and physical contributions is difficult and requires multiple controls. Here we propose a simple method to impose a mechanical compression on individual cells without altering the composition of the matrix. Live imaging during compression provides accurate information about the cell's morphology and migratory phenotype. Using Dictyostelium as a model, we observe that a compression of the order of 500 Pa flattens the cells under gel by up to 50%. This uniaxial compression directly triggers a transition in the mode of migration from primarily pseudopodial to bleb driven in <30 s. This novel device is therefore capable of influencing cell migration in real time and offers a convenient approach with which to systematically study mechanotransduction in confined environments.


Asunto(s)
Mecanotransducción Celular/fisiología , Soporte de Peso/fisiología , Pesos y Medidas/instrumentación , Movimiento Celular/fisiología , Dictyostelium/fisiología , Matriz Extracelular , Seudópodos , Estrés Mecánico
20.
Biol Open ; 6(2): 200-209, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28011630

RESUMEN

ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...