Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Transplantation ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773844

RESUMEN

BACKGROUND: Acute cellular rejection (ACR) in heart transplant (HTx) recipients may be accompanied by cardiac cell damage with subsequent exposure to cardiac autoantigens and the production of cardiac autoantibodies (aABs). This study aimed to evaluate a peptide array screening approach for cardiac aABs in HTx recipients during ACR (ACR-HTx). METHODS: In this retrospective single-center observational study, sera from 37 HTx recipients, as well as age and sex-matched healthy subjects were screened for a total of 130 cardiac aABs of partially overlapping peptide sequences directed against structural proteins using a peptide array approach. RESULTS: In ACR-HTx, troponin I (TnI) serum levels were found to be elevated. Here, we could identify aABs against beta-2-adrenergic receptor (ß-2AR: EAINCYANETCCDFFTNQAY) to be upregulated in ACR-HTx (intensities: 0.80 versus 1.31, P = 0.0413). Likewise, patients positive for ß-2AR aABs showed higher TnI serum levels during ACR compared with aAB negative patients (10.0 versus 30.0 ng/L, P = 0.0375). Surprisingly, aABs against a sequence of troponin I (TnI: QKIFDLRGKFKRPTLRRV) were found to be downregulated in ACR-HTx (intensities: 3.49 versus 1.13, P = 0.0025). A comparison in healthy subjects showed the same TnI sequence to be upregulated in non-ACR-HTx (intensities: 2.19 versus 3.49, P = 0.0205), whereas the majority of aABs were suppressed in non-ACR-HTx. CONCLUSIONS: Our study served as a feasibility analysis for a peptide array screening approach in HTx recipients during ACR and identified 2 different regulated aABs in ACR-HTx. Hence, further multicenter studies are needed to evaluate the prognostic implications of aAB testing and diagnostic or therapeutic consequences.

2.
Circulation ; 148(6): 473-486, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317858

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) are approved for multiple cancers but can result in ICI-associated myocarditis, an infrequent but life-threatening condition. Elevations in cardiac biomarkers, specifically troponin-I (cTnI), troponin-T (cTnT), and creatine kinase (CK), are used for diagnosis. However, the association between temporal elevations of these biomarkers with disease trajectory and outcomes has not been established. METHODS: We analyzed the diagnostic accuracy and prognostic performances of cTnI, cTnT, and CK in patients with ICI myocarditis (n=60) through 1-year follow-up in 2 cardio-oncology units (APHP Sorbonne, Paris, France and Heidelberg, Germany). A total of 1751 (1 cTnT assay type), 920 (4 cTnI assay types), and 1191 CK sampling time points were available. Major adverse cardiomyotoxic events (MACE) were defined as heart failure, ventricular arrhythmia, atrioventricular or sinus block requiring pacemaker, respiratory muscle failure requiring mechanical ventilation, and sudden cardiac death. Diagnostic performance of cTnI and cTnT was also assessed in an international ICI myocarditis registry. RESULTS: Within 72 hours of admission, cTnT, cTnI, and CK were increased compared with upper reference limits (URLs) in 56 of 57 (98%), 37 of 42 ([88%] P=0.03 versus cTnT), and 43 of 57 ([75%] P<0.001 versus cTnT), respectively. This increased rate of positivity for cTnT (93%) versus cTnI ([64%] P<0.001) on admission was confirmed in 87 independent cases from an international registry. In the Franco-German cohort, 24 of 60 (40%) patients developed ≥1 MACE (total, 52; median time to first MACE, 5 [interquartile range, 2-16] days). The highest value of cTnT:URL within the first 72 hours of admission performed best in terms of association with MACE within 90 days (area under the curve, 0.84) than CK:URL (area under the curve, 0.70). A cTnT:URL ≥32 within 72 hours of admission was the best cut-off associated with MACE within 90 days (hazard ratio, 11.1 [95% CI, 3.2-38.0]; P<0.001), after adjustment for age and sex. cTnT was increased in all patients within 72 hours of the first MACE (23 of 23 [100%]), whereas cTnI and CK values were less than the URL in 2 of 19 (11%) and 6 of 22 (27%) of patients (P<0.001), respectively. CONCLUSIONS: cTnT is associated with MACE and is sensitive for diagnosis and surveillance in patients with ICI myocarditis. A cTnT:URL ratio <32 within 72 hours of diagnosis is associated with a subgroup at low risk for MACE. Potential differences in diagnostic and prognostic performances between cTnT and cTnI as a function of the assays used deserve further evaluation in ICI myocarditis.


Asunto(s)
Miocarditis , Humanos , Miocarditis/inducido químicamente , Miocarditis/diagnóstico , Inhibidores de Puntos de Control Inmunológico , Biomarcadores , Creatina Quinasa , Pronóstico , Troponina T
3.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373021

RESUMEN

After Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) developed into a global pandemic, not only the infection itself but also several immune-mediated side effects led to additional consequences. Immune reactions such as epitope spreading and cross-reactivity may also play a role in the development of long-COVID, although the exact pathomechanisms have not yet been elucidated. Infection with SARS-CoV-2 can not only cause direct damage to the lungs but can also lead to secondary indirect organ damage (e.g., myocardial involvement), which is often associated with high mortality. To investigate whether an immune reaction against the viral peptides can lead to organ affection, a mouse strain known to be susceptible to the development of autoimmune diseases, such as experimental autoimmune myocarditis (EAM), was used. First, the mice were immunized with single or pooled peptide sequences of the virus's spike (SP), membrane (MP), nucleocapsid (NP), and envelope protein (EP), then the heart and other organs such as the liver, kidney, lung, intestine, and muscle were examined for signs of inflammation or other damage. Our results showed no significant inflammation or signs of pathology in any of these organs as a result of the immunization with these different viral protein sequences. In summary, immunization with different SARS-CoV-2 spike-, membrane-, nucleocapsid-, and envelope-protein peptides does not significantly affect the heart or other organ systems adversely, even when using a highly susceptible mouse strain for experimental autoimmune diseases. This suggests that inducing an immune reaction against these peptides of the SARS-CoV-2 virus alone is not sufficient to cause inflammation and/or dysfunction of the myocardium or other studied organs.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Miocarditis , Ratones , Humanos , Animales , SARS-CoV-2 , Autoinmunidad , Miocarditis/etiología , Epítopos , Síndrome Post Agudo de COVID-19 , Péptidos , Enfermedades Autoinmunes/etiología , Inflamación
4.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902442

RESUMEN

In the course of the SARS-CoV-2 pandemic, vaccination safety and risk factors of SARS-CoV-2 mRNA-vaccines were under consideration after case reports of vaccine-related side effects, such as myocarditis, which were mostly described in young men. However, there is almost no data on the risk and safety of vaccination, especially in patients who are already diagnosed with acute/chronic (autoimmune) myocarditis from other causes, such as viral infections, or as a side effect of medication and treatment. Thus, the risk and safety of these vaccines, in combination with other therapies that could induce myocarditis (e.g., immune checkpoint inhibitor (ICI) therapy), are still poorly assessable. Therefore, vaccine safety, with respect to worsening myocardial inflammation and myocardial function, was studied in an animal model of experimentally induced autoimmune myocarditis. Furthermore, it is known that ICI treatment (e.g., antibodies (abs) against PD-1, PD-L1, and CTLA-4, or a combination of those) plays an important role in the treatment of oncological patients. However, it is also known that treatment with ICIs can induce severe, life-threatening myocarditis in some patients. Genetically different A/J (most susceptible strain) and C57BL/6 (resistant strain) mice, with diverse susceptibilities for induction of experimental autoimmune myocarditis (EAM) at various age and gender, were vaccinated twice with SARS-CoV-2 mRNA-vaccine. In an additional A/J group, an autoimmune myocarditis was induced. In regard to ICIs, we tested the safety of SARS-CoV-2 vaccination in PD-1-/- mice alone, and in combination with CTLA-4 abs. Our results showed no adverse effects related to inflammation and heart function after mRNA-vaccination, independent of age, gender, and in different mouse strains susceptible for induction of experimental myocarditis. Moreover, there was no worsening effect on inflammation and cardiac function when EAM in susceptible mice was induced. However, in the experiments with vaccination and ICI treatment, we observed, in some mice, low elevation of cardiac troponins in sera, and low scores of myocardial inflammation. In sum, mRNA-vaccines are safe in a model of experimentally induced autoimmune myocarditis, but patients undergoing ICI therapy should be closely monitored when vaccinated.


Asunto(s)
COVID-19 , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Miocarditis , Masculino , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Vacunas contra la COVID-19 , Antígeno CTLA-4 , SARS-CoV-2 , Receptor de Muerte Celular Programada 1 , Inflamación , Anticuerpos , Modelos Animales , ARN Mensajero , Vacunación
5.
Immunology ; 165(2): 158-170, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34606637

RESUMEN

Treatment of myocarditis is often limited to symptomatic treatment due to unknown pathomechanisms. In order to identify new therapeutic approaches, the contribution of locked nucleic acid antisense oligonucleotides (LNA ASOs) in autoimmune myocarditis was investigated. Hence, A/J mice were immunized with cardiac troponin I (TnI) to induce experimental autoimmune myocarditis (EAM) and treated with LNA ASOs. The results showed an unexpected anti-inflammatory effect for one administered LNA ASO MB_1114 by reducing cardiac inflammation and fibrosis. The target sequence of MB_1114 was identified as lactate dehydrogenase B (mLDHB). For further analysis, mice received mLdhb-specific GapmeR during induction of EAM. Here, mice receiving the mLdhb-specific GapmeR showed increased protein levels of cardiac mLDHB and a reduced cardiac inflammation and fibrosis. The effect of increased cardiac mLDHB protein level was associated with a downregulation of genes of reactive oxygen species (ROS)-associated proteins, indicating a reduction in ROS. Here, the suppression of murine pro-apoptotic Bcl-2-associated X protein (mBax) was also observed. In our study, an unexpected anti-inflammatory effect of LNA ASO MB_1114 and mLdhb-specific GapmeR during induction of EAM could be demonstrated in vivo. This effect was associated with increased protein levels of cardiac mLDHB, mBax suppression and reduced ROS activation. Thus, LDHB and LNA ASOs may be considered as a promising target for directed therapy of myocarditis. Nevertheless, further investigations are necessary to clarify the mechanism of action of anti-inflammatory LDHB-triggered effects.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Miocarditis/etiología , Miocarditis/metabolismo , Oligonucleótidos/farmacología , Animales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/tratamiento farmacológico , Biomarcadores , Biopsia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inhibidores Enzimáticos/farmacología , Femenino , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Isoenzimas/antagonistas & inhibidores , Ratones , Miocarditis/diagnóstico , Miocarditis/tratamiento farmacológico , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Especies Reactivas de Oxígeno/metabolismo
6.
Viruses ; 13(7)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202636

RESUMEN

Infection of mice with Coxsackievirus B3 (CVB3) triggers inflammation of the heart and this mouse model is commonly used to investigate underlying mechanisms and therapeutic aspects for viral myocarditis. Virus-triggered cytotoxicity and the activity of infiltrating immune cells contribute to cardiac tissue injury. In addition to cardiac manifestation, CVB3 causes cell death and inflammation in the pancreas. The resulting pancreatitis represents a severe burden and under such experimental conditions, analgesics may be supportive to improve the animals' well-being. Notably, several known mechanisms exist by which analgesics can interfere with the immune system and thereby compromise the feasibility of the model. We set up a study aiming to improve animal welfare while ensuring model integrity and investigated how tramadol, an opioid, affects virus-induced pathogenicity and immune response in the heart. Tramadol was administered seven days prior to a CVB3 infection in C57BL/6 mice and treatment was continued until the day of analysis. Tramadol had no effect on the virus titer or viral pathogenicity in the heart tissue and the inflammatory response, a hallmark of myocardial injury, was maintained. Our results show that tramadol exerts no disruptive effects on the CVB3 myocarditis mouse model and, therefore, the demonstrated protocol should be considered as a general analgesic strategy for CVB3 infection.


Asunto(s)
Analgesia/métodos , Infecciones por Coxsackievirus/complicaciones , Miocarditis/tratamiento farmacológico , Miocarditis/virología , Tramadol/uso terapéutico , Replicación Viral/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Enterovirus Humano B/patogenicidad , Corazón/efectos de los fármacos , Corazón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Tramadol/farmacología , Carga Viral/efectos de los fármacos
7.
Cancers (Basel) ; 13(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065419

RESUMEN

Immune checkpoint inhibitors (ICIs) are revolutionizing cancer treatment. Nevertheless, their increasing use leads to an increase of immune-related adverse events (irAEs). Among them, ICI-associated myocarditis (ICIM) is a rare irAE with a high mortality rate. We aimed to characterize the transcriptional changes of ICIM myocardial biopsies and their possible implications. Patients suspected for ICIM were assessed in the cardio-oncology units of University Hospitals Heidelberg and Kiel. Via RNA sequencing of myocardial biopsies, we compared transcriptional changes of ICIM (n = 9) with samples from dilated cardiomyopathy (DCM, n = 11), virus-induced myocarditis (VIM, n = 5), and with samples of patients receiving ICIs without any evidence of myocarditis (n = 4). Patients with ICIM (n = 19) showed an inconsistent clinical presentation, e.g., asymptomatic elevation of cardiac biomarkers (hs-cTnT, NT-proBNP, CK), a drop in left ventricular ejection fraction, or late gadolinium enhancement in cMRI. We found 3784 upregulated genes in ICIM (FDR < 0.05). In the overrepresented pathway 'response to interferon-gamma', we found guanylate binding protein 5 and 6 (compared with VIM: GBP5 (log2 fc 3.21), GBP6 (log2 fc 5.37)) to be significantly increased in ICIM on RNA- and protein-level. We conclude that interferon-gamma and inflammasome-regulating proteins, such as GBP5, may be of unrecognized significance in the pathophysiology of ICIM.

8.
Sci Rep ; 11(1): 9954, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976254

RESUMEN

Biomarkers that reflect hemodynamic stress, inflammation, extracellular matrix remodeling, angiogenesis, and endothelial dysfunction may improve risk stratification and add valuable pathobiological insight in patients with out-of-hospital cardiac arrest (OHCA). In total, 120 patients with OHCA who survived at least 48 h after return of spontaneous circulation were consecutively included in the present analysis. Concentrations of 30 biomarkers were measured simultaneously using a multi-panel biomarker assay. Cox regression models were adjusted for age, sex, estimated glomerular filtration rate, lactate concentration, bystander resuscitation, initial cardiac rhythm, and type of targeted temperature management. Overall, 57 patients (47.5%) had a favorable neurological outcome (Cerebral Performance Category ≤ 2) at 30 days, while palliative care was initiated in 49 patients (40.8%), and 52 patients (43.3%) died. After correction for multiple testing with Bonferroni-Holm, 8 biomarkers (including Angiopoietin-2, Procalcitonin, Resistin, IL-4Rα, MMP-8, TNFα, Renin, and IL-1α) were significantly associated with all-cause death. After multivariable adjustment, only angiopoietin-2 (Adjusted (Adj) hazard ratio (HR) per 1-unit increase in standardized biomarker concentrations 1.52 (95% CI 1.16-1.99)) and renin (Adj HR 1.32 (95% CI 1.06-1.65) remained independently associated with an increased risk of death. The discriminatory performance indicated good performance for angiopoietin-2 (area under the curve (AUC): 0.75 (95% CI 0.66-0.75) and was significantly higher (P = 0.011) as compared with renin (AUC: 0.60, 95% CI 0.50-0.60). In conclusion, angiopoietin-2 was significantly associated with all-cause mortality in patients with OHCA who survived the first 48 h and may prove to be useful for risk stratification of these patients.


Asunto(s)
Angiopoyetina 2/análisis , Biomarcadores/análisis , Paro Cardíaco Extrahospitalario/mortalidad , Anciano , Angiopoyetina 2/sangre , Área Bajo la Curva , Biomarcadores/sangre , Reanimación Cardiopulmonar/efectos adversos , Femenino , Paro Cardíaco/inmunología , Paro Cardíaco/mortalidad , Hemodinámica/fisiología , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Paro Cardíaco Extrahospitalario/inmunología , Proyectos Piloto , Pronóstico , Modelos de Riesgos Proporcionales , Renina/análisis , Renina/sangre , Factores de Riesgo
9.
Basic Res Cardiol ; 116(1): 7, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523326

RESUMEN

A preclinical model of troponin I-induced myocarditis (AM) revealed a prominent role of the immunoproteasome (ip), the main immune cell-resident proteasome isoform, in heart-directed autoimmunity. Viral infection of the heart is a known trigger of cardiac autoimmunity, with the ip enhancing systemic inflammatory responses after infection with a cardiotropic coxsackievirusB3 (CV). Here, we used ip-deficient A/J-LMP7-/- mice to investigate the role of ip-mediated effects on adaptive immunity in CV-triggered myocarditis and found no alteration of the inflammatory heart tissue damage or cardiac function in comparison to wild-type controls. Aiming to define the impact of the systemic inflammatory storm under the control of ip proteolysis during CV infection, we targeted the ip in A/J mice with the inhibitor ONX 0914 after the first cycle of infection, when systemic inflammation has set in, well before cardiac inflammation. During established acute myocarditis, the ONX 0914 treatment group had the same reduction in cardiac output as the controls, with inflammatory responses in heart tissue being unaffected by the compound. Based on these findings and with regard to the known anti-inflammatory role of ONX 0914 in CV infection, we conclude that the efficacy of ip inhibitors for CV-triggered myocarditis in A/J mice relies on their immunomodulatory effects on the systemic inflammatory reaction.


Asunto(s)
Antiinflamatorios/farmacología , Infecciones por Coxsackievirus/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Células Mieloides/efectos de los fármacos , Miocarditis/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Oligopéptidos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Animales , Células Cultivadas , Infecciones por Coxsackievirus/enzimología , Infecciones por Coxsackievirus/inmunología , Modelos Animales de Enfermedad , Enterovirus Humano B/inmunología , Enterovirus Humano B/patogenicidad , Interacciones Huésped-Patógeno , Inflamación/enzimología , Inflamación/inmunología , Inflamación/virología , Masculino , Ratones Noqueados , Células Mieloides/enzimología , Células Mieloides/inmunología , Células Mieloides/virología , Miocarditis/enzimología , Miocarditis/inmunología , Miocarditis/virología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/virología , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis
10.
Clin Res Cardiol ; 109(12): 1531-1539, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32783099

RESUMEN

AIMS: Heart transplantation may represent a particular risk factor for severe coronavirus infectious disease 2019 (COVID-19) due to chronic immunosuppression and frequent comorbidities. We conducted a nation-wide survey of all heart transplant centers in Germany presenting the clinical characteristics of heart transplant recipients with COVID-19 during the first months of the pandemic in Germany. METHODS AND RESULTS: A multicenter survey of all heart transplant centers in Germany evaluating the current status of COVID-19 among adult heart transplant recipients was performed. A total of 21 heart transplant patients with COVID-19 was reported to the transplant centers during the first months of the pandemic in Germany. Mean patient age was 58.6 ± 12.3 years and 81.0% were male. Comorbidities included arterial hypertension (71.4%), dyslipidemia (71.4%), diabetes mellitus (33.3%), chronic kidney failure requiring dialysis (28.6%) and chronic-obstructive lung disease/asthma (19.0%). Most patients received an immunosuppressive drug regimen consisting of a calcineurin inhibitor (71.4%), mycophenolate mofetil (85.7%) and steroids (71.4%). Eight of 21 patients (38.1%) displayed a severe course needing invasive mechanical ventilation. Those patients showed a high mortality (87.5%) which was associated with right ventricular dysfunction (62.5% vs. 7.7%; p = 0.014), arrhythmias (50.0% vs. none; p = 0.012), and thromboembolic events (50.0% vs. none; p = 0.012). Elevated high-sensitivity cardiac troponin T- and N-terminal prohormone of brain natriuretic peptide were significantly associated with the severe form of COVID-19 (p = 0.017 and p < 0.001, respectively). CONCLUSION: Severe course of COVID-19 was frequent in heart transplanted patients. High mortality was associated with right ventricular dysfunction, arrhythmias, thromboembolic events, and markedly elevated cardiac biomarkers.


Asunto(s)
COVID-19/epidemiología , Trasplante de Corazón/efectos adversos , Inmunosupresores/efectos adversos , Infecciones Oportunistas/epidemiología , Anciano , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/terapia , Femenino , Alemania/epidemiología , Encuestas de Atención de la Salud , Humanos , Huésped Inmunocomprometido , Masculino , Persona de Mediana Edad , Infecciones Oportunistas/inmunología , Infecciones Oportunistas/mortalidad , Infecciones Oportunistas/terapia , Factores de Riesgo , Factores de Tiempo , Receptores de Trasplantes , Resultado del Tratamiento
11.
Nat Commun ; 11(1): 4035, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788578

RESUMEN

Polyphosphates are linear polymers and ubiquitous metabolites. Bacterial polyphosphates are long chains of hundreds of phosphate units. Here, we report that mouse survival of peritoneal Escherichia coli sepsis is compromised by long-chain polyphosphates, and improves with bacterial polyphosphatekinase deficiency or neutralization using recombinant exopolyphosphatase. Polyphosphate activities are chain-length dependent, impair pathogen clearance, antagonize phagocyte recruitment, diminish phagocytosis and decrease production of iNOS and cytokines. Macrophages bind and internalize polyphosphates, in which their effects are independent of P2Y1 and RAGE receptors. The M1 polarization driven by E. coli derived LPS is misdirected by polyphosphates in favor of an M2 resembling phenotype. Long-chain polyphosphates modulate the expression of more than 1800 LPS/TLR4-regulated genes in macrophages. This interference includes suppression of hundreds of type I interferon-regulated genes due to lower interferon production and responsiveness, blunted STAT1 phosphorylation and reduced MHCII expression. In conclusion, prokaryotic polyphosphates disturb multiple macrophage functions for evading host immunity.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Escherichia coli/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Polifosfatos/metabolismo , Animales , Presentación de Antígeno/inmunología , Polaridad Celular , Antígenos de Histocompatibilidad Clase II/metabolismo , Interferón Tipo I/metabolismo , Lipopolisacáridos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos C57BL , Células Mieloides/inmunología , Fenotipo , Sepsis/inmunología , Análisis de Supervivencia , Transcriptoma/genética
12.
J Am Heart Assoc ; 9(10): e015289, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32410525

RESUMEN

Background Variants of the desmosomal protein desmoplakin are associated with arrhythmogenic cardiomyopathy, an important cause of ventricular arrhythmias in children and young adults. Disease penetrance of desmoplakin variants is incomplete and variant carriers may display noncardiac, dermatologic phenotypes. We describe a novel cardiac phenotype associated with a truncating desmoplakin variant, likely causing mechanical instability of myocardial desmosomes. Methods and Results In 2 young brothers with recurrent myocarditis triggered by physical exercise, screening of 218 cardiomyopathy-related genes identified the heterozygous truncating variant p.Arg1458Ter in desmoplakin. Screening for infections yielded no evidence of viral or nonviral infections. Myosin and troponin I autoantibodies were detected at high titers. Immunohistology failed to detect any residual DSP protein in endomyocardial biopsies, and none of the histologic criteria of arrhythmogenic cardiomyopathy were fulfilled. Cardiac magnetic resonance imaging revealed no features associated with right ventricular arrhythmogenic cardiomyopathy, but multifocal subepicardial late gadolinium enhancement was present in the left ventricles of both brothers. Screening of adult cardiomyopathy cohorts for truncating variants identified the rare genetic variants p.Gln307Ter, p.Tyr1391Ter, and p.Tyr1512Ter, suggesting that over subsequent decades critical genetic/exogenous modifiers drive pathogenesis from desmoplakin truncations toward different end points. Conclusions The described novel phenotype of familial recurrent myocarditis associated with a desmoplakin truncation in adolescents likely represents a serendipitously revealed subtype of arrhythmogenic cardiomyopathy. It may be caused by a distinctive adverse effect of the variant desmoplakin upon the mechanical stability of myocardial desmosomes. Variant screening is advisable to allow early detection of patients with similar phenotypes.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Desmoplaquinas/genética , Ejercicio Físico , Variación Genética , Miocarditis/genética , Adolescente , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Displasia Ventricular Derecha Arritmogénica/fisiopatología , Femenino , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Herencia , Humanos , Masculino , Persona de Mediana Edad , Miocarditis/diagnóstico , Miocarditis/fisiopatología , Linaje , Fenotipo , Recurrencia , Factores de Riesgo , Hermanos
13.
Cells ; 9(5)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354159

RESUMEN

: Inhibition of proteasome function by small molecules is highly efficacious in cancer treatment. Other than non-selective proteasome inhibitors, immunoproteasome-specific inhibitors allow for specific targeting of the proteasome in immune cells and the profound anti-inflammatory potential of such compounds revealed implications for inflammatory scenarios. For pathogen-triggered inflammation, however, the efficacy of immunoproteasome inhibitors is controversial. In this study, we investigated how ONX 0914, an immunoproteasome-selective inhibitor, influences CoxsackievirusB3 infection in NMRI mice, resulting in the development of acute and chronic myocarditis, which is accompanied by formation of the immunoproteasome in heart tissue. In groups in which ONX 0914 treatment was initiated once viral cytotoxicity had emerged in the heart, ONX 0914 had no anti-inflammatory effect in the acute or chronic stages. ONX 0914 treatment initiated prior to infection, however, increased viral cytotoxicity in cardiomyocytes, promoting infiltration of myeloid immune cells into the heart. At this stage, ONX 0914 completely inhibited the ß5 subunit of the standard cardiac proteasome and less efficiently blocked its immunoproteasome counterpart LMP7. In conclusion, ONX 0914 unselectively perturbs cardiac proteasome function in viral myocarditis of NMRI mice, reduces the capacity of the host to control the viral burden and promotes cardiac inflammation.


Asunto(s)
Miocarditis/inmunología , Miocitos Cardíacos/efectos de los fármacos , Oligopéptidos/farmacología , Animales , Animales no Consanguíneos , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano B/patogenicidad , Masculino , Ratones , Miocarditis/tratamiento farmacológico , Miocarditis/virología , Miocitos Cardíacos/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología
14.
Circulation ; 141(23): 1885-1902, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32160764

RESUMEN

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy is often accompanied by immune-related pathology, with an increasing occurrence of high-risk ICI-related myocarditis. Understanding the mechanisms involved in this side effect could enable the development of management strategies. In mouse models, immune checkpoints, such as PD-1 (programmed cell death protein 1), control the threshold of self-antigen responses directed against cardiac TnI (troponin I). We aimed to identify how the immunoproteasome, the main proteolytic machinery in immune cells harboring 3 distinct protease activities in the LMP2 (low-molecular-weight protein 2), LMP7 (low-molecular-weight protein 7), and MECL1 (multicatalytic endopeptidase complex subunit 1) subunit, affects TnI-directed autoimmune pathology of the heart. METHODS: TnI-directed autoimmune myocarditis (TnI-AM), a CD4+ T-cell-mediated disease, was induced in mice lacking all 3 immunoproteasome subunits (triple-ip-/-) or lacking either the gene encoding LMP2 and LMP7 by immunization with a cardiac TnI peptide. Alternatively, before induction of TnI-AM or after establishment of autoimmune myocarditis, mice were treated with the immunoproteasome inhibitor ONX 0914. Immune parameters defining heart-specific autoimmunity were investigated in experimental TnI-AM and in 2 cases of ICI-related myocarditis. RESULTS: All immunoproteasome-deficient strains showed mitigated autoimmune-related cardiac pathology with less inflammation, lower proinflammatory and chemotactic cytokines, less interleukin-17 production, and reduced fibrosis formation. Protection from TnI-directed autoimmune heart pathology with improved cardiac function in LMP7-/- mice involved a changed balance between effector and regulatory CD4+ T cells in the spleen, with CD4+ T cells from LMP7-/- mice showing a higher expression of inhibitory PD-1 molecules. Blocked immunoproteasome proteolysis, by treatment of TLR2 (Toll-like receptor 2)-engaged and TLR7 (Toll-like receptor 7)/TLR8 (Toll-like receptor 8)-engaged CD14+ monocytes with ONX 0914, diminished proinflammatory cytokine responses, thereby reducing the boost for the expansion of self-reactive CD4+ T cells. Correspondingly, in mice, ONX 0914 treatment reversed cardiac autoimmune pathology, preventing the induction and progression of TnI-AM when self-reactive CD4+ T cells were primed. The autoimmune signature during experimental TnI-AM, with high immunoproteasome expression, immunoglobulin G deposition, interleukin-17 production in heart tissue, and TnI-directed humoral autoimmune responses, was also present in 2 cases of ICI-related myocarditis, demonstrating the activation of heart-specific autoimmune reactions by ICI therapy. CONCLUSIONS: By reversing heart-specific autoimmune responses, immunoproteasome inhibitors applied to a mouse model demonstrate their potential to aid in the management of autoimmune myocarditis in humans, possibly including patients with ICI-related heart-specific autoimmunity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Modelos Animales de Enfermedad , Eliminación de Gen , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunidad/inmunología , Miocarditis/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Anciano , Secuencia de Aminoácidos , Animales , Enfermedades Autoinmunes/inducido químicamente , Enfermedades Autoinmunes/genética , Cisteína Endopeptidasas/deficiencia , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/inmunología , Femenino , Humanos , Inmunidad/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Miocarditis/inducido químicamente , Miocarditis/genética , Complejo de la Endopetidasa Proteasomal/deficiencia , Complejo de la Endopetidasa Proteasomal/genética
15.
Sci Adv ; 6(11): eaay1109, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32195343

RESUMEN

Protein modification with ISG15 (ISGylation) represents a major type I IFN-induced antimicrobial system. Common mechanisms of action and species-specific aspects of ISGylation, however, are still ill defined and controversial. We used a multiphasic coxsackievirus B3 (CV) infection model with a first wave resulting in hepatic injury of the liver, followed by a second wave culminating in cardiac damage. This study shows that ISGylation sets nonhematopoietic cells into a resistant state, being indispensable for CV control, which is accomplished by synergistic activity of ISG15 on antiviral IFIT1/3 proteins. Concurrent with altered energy demands, ISG15 also adapts liver metabolism during infection. Shotgun proteomics, in combination with metabolic network modeling, revealed that ISG15 increases the oxidative capacity and promotes gluconeogenesis in liver cells. Cells lacking the activity of the ISG15-specific protease USP18 exhibit increased resistance to clinically relevant CV strains, therefore suggesting that stabilizing ISGylation by inhibiting USP18 could be exploited for CV-associated human pathologies.


Asunto(s)
Infecciones por Coxsackievirus/metabolismo , Citocinas/metabolismo , Enterovirus Humano B/metabolismo , Hígado/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Infecciones por Coxsackievirus/genética , Citocinas/genética , Femenino , Gluconeogénesis , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/patología , Hígado/virología , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
16.
Cardiovasc Res ; 116(10): 1756-1766, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31598635

RESUMEN

AIMS: The coxsackievirus B3 (CVB3) mouse myocarditis model is the standard model for investigation of virus-induced myocarditis but the pancreas, rather than the heart, is the most susceptible organ in mouse. The aim of this study was to develop a CVB3 mouse myocarditis model in which animals develop myocarditis while attenuating viral infection of the pancreas and the development of severe pancreatitis. METHODS AND RESULTS: We developed the recombinant CVB3 variant H3N-375TS by inserting target sites (TS) of miR-375, which is specifically expressed in the pancreas, into the 3'UTR of the genome of the pancreo- and cardiotropic CVB3 variant H3. In vitro evaluation showed that H3N-375TS was suppressed in pancreatic miR-375-expressing EndoC-ßH1 cells >5 log10, whereas its replication was not suppressed in isolated primary embryonic mouse cardiomyocytes. In vivo, intraperitoneal (i.p.) administration of H3N-375TS to NMRI mice did not result in pancreatic or cardiac infection. In contrast, intravenous (i.v.) administration of H3N-375TS to NMRI and Balb/C mice resulted in myocardial infection and acute and chronic myocarditis, whereas the virus was not detected in the pancreas and the pancreatic tissue was not damaged. Acute myocarditis was characterized by myocardial injury, inflammation with mononuclear cells, induction of proinflammatory cytokines, and detection of replicating H3N-375TS in the heart. Mice with chronic myocarditis showed myocardial fibrosis and persistence of H3N-375TS genomic RNA but no replicating virus in the heart. Moreover, H3N-375TS infected mice showed distinctly less suffering compared with mice that developed pancreatitis and myocarditis after i.p. or i.v application of control virus. CONCLUSION: In this study, we demonstrate that by use of the miR-375-sensitive CVB3 variant H3N-375TS, CVB3 myocarditis can be established without the animals developing severe systemic infection and pancreatitis. As the H3N-375TS myocarditis model depends on pancreas-attenuated H3N-375TS, it can easily be used in different mouse strains and for various applications.


Asunto(s)
Infecciones por Coxsackievirus/virología , Enterovirus Humano B/patogenicidad , Miocarditis/virología , Miocitos Cardíacos/virología , Páncreas/virología , Pancreatitis/virología , Regiones no Traducidas 3' , Animales , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/patología , Modelos Animales de Enfermedad , Enterovirus Humano B/genética , Femenino , Fibrosis , Genotipo , Células HEK293 , Células HeLa , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , MicroARNs/genética , Miocarditis/metabolismo , Miocarditis/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Pancreatitis/prevención & control , Fenotipo , Virulencia , Replicación Viral
18.
J Card Fail ; 25(8): 674-685, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31212034

RESUMEN

BACKGROUND: The pathogenesis of inflammatory cardiomyopathy is affected by the activation of autoimmune-mediated cascades. To study these cascades, we developed an experimental model of troponin I (TnI)-induced autoimmune myocarditis (EAM). One factor playing a pivotal role in the context of autoimmune disorders is the receptor fibroblast growth factor-inducible 14 (FN14). Thus, the impact of FN14 in the development of autoimmune myocarditis was investigated. METHODS AND RESULTS: TnI-immunization led to a significantly increased myocardial FN14 mRNA and protein expression in wild-type (wt) mice. To investigate the precise role of FN14 in EAM, FN14 knockout (ko) and wt littermates were immunized with TnI or control buffer. The animals were evaluated for cardiac parameters and indicators of myocardial injury. FN14 deficiency resulted in better cardiac performance, less myocardial inflammation, fibrosis, and cardiac damage. A lower myocardial mRNA expression of inflammatory cytokines and chemokines as well as their receptors could be demonstrated in TnI-immunized FN14ko compared to wt mice also immunized with TnI. Western blot analysis revealed a contribution of nuclear factor kappa-light-chain-enhancer of activated B cells to FN14-induced signaling cascades. CONCLUSIONS: In the pathogenesis of autoimmune myocarditis, the inflammatory response to cardiac injury is attenuated in FN14ko mice. Thus, inhibition of FN14 in patients might represent a novel therapeutic strategy in the treatment of inflammatory cardiomyopathy.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Modelos Animales de Enfermedad , Miocarditis/metabolismo , Transducción de Señal/fisiología , Receptor de TWEAK/deficiencia , Animales , Enfermedades Autoinmunes/inmunología , Femenino , Ratones , Ratones Noqueados , Miocarditis/inmunología
19.
Cytokine ; 116: 139-149, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30716658

RESUMEN

BACKGROUND: Adiponectin is a hormone that together with its receptors modulates a number of metabolic processes including gluconeogenesis and lipid catabolism. It belongs to the C1QTNF (complement C1q tumor necrosis factor-related protein) family, which has a variety of members with high amino acid sequence homology and overlapping functions. Concentration of adiponectin in blood is inversely correlated with body fat percentage and cardiac risk factors like blood pressure and CRP (C-reactive protein) level. Studies have identified the existence of a cardiac adiponectin system. However, little is known about the role of this system in the pathogenesis of autoimmune myocarditis. Thus, we have studied the involvement of adiponectin in the development of this autoimmune disorder in a mouse model of experimental autoimmune myocarditis (EAM). METHODS: Adiponectin knockout (ko) and wild type (wt) mice were immunized with cardiac troponin I (cTnI) to induce an EAM. To determine the severity of myocardial damage, inflammation and fibrosis were scored after HE and Afog staining and high sensitivity troponin T (hsTnT) level was measured. To detect if changes in specific inflammatory cell numbers could be observed between the genotypes, we performed immunohistochemical staining to detect T lymphocytes, B lymphocytes and macrophages. The level of the humoral immune response was determined through the measurement of cTnI-specific serum IgG autoantibodies. Relative mRNA expression of different cytokines, C1QTNF family members and adiponectin receptors in the heart tissue was analyzed with qPCR. RESULTS: Animals immunized with cTnI developed autoimmune myocarditis with a significant deterioration of cardiac parameters compared to the corresponding control group. The adiponectin ko group immunized with cTnI showed a tendency towards increased inflammation, fibrosis, heart-to-body-weight ratio, infiltration pattern of T lymphocytes, B lymphocytes and macrophages, hsTnT concentration, humoral immune response and mRNA expression of interleukin 6 in the heart tissue and decreased weight gain compared to the wt group immunized with cTnI. However, the difference to the wt group treated with cTnI was not significant. The analysis of cardiac mRNA expression of adiponectin receptors and four C1QTNF family members, most suitable for fulfilling the functions of adiponectin in adiponectin ko mice, did not show any significant differences between adiponectin ko and wt group at all. CONCLUSION: Our study reveals that the absence of adiponectin did not lead to a significantly increased impairment of cardiac function and was also unlikely to be compensated by its receptors or other C1QTNF family members in the murine model of EAM. Here, other synergistic or redundant effects might play a role and must be investigated in further studies to understand the role and function of adiponectin in autoimmune myocarditis.


Asunto(s)
Adiponectina/genética , Enfermedades Autoinmunes/genética , Cardiomiopatía Dilatada/genética , Miocarditis/genética , Animales , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Linfocitos B/inmunología , Cardiomiopatía Dilatada/inmunología , Citocinas/análisis , Citocinas/genética , Modelos Animales de Enfermedad , Corazón/fisiología , Inflamación/patología , Macrófagos/inmunología , Ratones , Ratones Noqueados , Miocarditis/inmunología , Linfocitos T/inmunología , Troponina I/sangre
20.
Front Immunol ; 10: 3096, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010143

RESUMEN

Interleukin 17A (IL-17A) is one of the currently known six members of the IL-17 cytokine family and is implicated in immune responses to infectious pathogens and in the pathogenesis of inflammatory autoimmune diseases like psoriasis. Psoriatic skin is characterized by high expression of IL-17A and IL-17F, which act on immune and non-immune cell types and strongly contribute to tissue inflammation. In psoriatic lesions, IL-17A, IL-17E, and IL-17F are involved in neutrophil accumulation, followed by the formation of epidermal micro abscesses. IL-17A together with other Th17 cytokines also upregulates the production of several chemokines that are implicated in psoriasis pathogenesis. IL17A-targeting antibodies show an impressive clinical efficacy in patients with psoriasis. Studies have reported an improvement of at least 75% as measured by the psoriasis area and severity index (PASI) in >80% of patients treated with anti-IL-17A therapy. Psoriasis skin manifestations, cardiovascular as well as metabolic disease in psoriasis appear to share pathogenic mechanisms evolving around IL-17A and its proinflammatory role. Thus, anti-IL-17A therapy not only improves skin manifestations of psoriasis, but also cardiovascular inflammation as well as metabolic factors and different domains of psoriatic arthritis (PsA) including peripheral arthritis, enthesitis, dactylitis, and axial involvement. This review summarizes the biological role of IL-17A, before reviewing currently available data on its role in the physiology and pathophysiology of the skin, as well as the cardiovascular and the metabolic system. In conclusion, clinical recommendations for patients with moderate to severe psoriasis based on the current available data are given.


Asunto(s)
Artritis Psoriásica/inmunología , Enfermedades Cardiovasculares/inmunología , Interleucina-17/inmunología , Enfermedades Metabólicas/inmunología , Células Th17/inmunología , Artritis Psoriásica/patología , Artritis Psoriásica/terapia , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Humanos , Interleucina-17/antagonistas & inhibidores , Enfermedades Metabólicas/patología , Enfermedades Metabólicas/terapia , Células Th17/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...