Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 3(10): 100779, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36208629

RESUMEN

Mechanisms of neutrophil involvement in severe coronavirus disease 2019 (COVID-19) remain incompletely understood. Here, we collect longitudinal blood samples from 306 hospitalized COVID-19+ patients and 86 controls and perform bulk RNA sequencing of enriched neutrophils, plasma proteomics, and high-throughput antibody profiling to investigate relationships between neutrophil states and disease severity. We identify dynamic switches between six distinct neutrophil subtypes. At days 3 and 7 post-hospitalization, patients with severe disease display a granulocytic myeloid-derived suppressor cell-like gene expression signature, while patients with resolving disease show a neutrophil progenitor-like signature. Humoral responses are identified as potential drivers of neutrophil effector functions, with elevated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G1 (IgG1)-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirm that while patient-derived IgG antibodies induce phagocytosis in healthy donor neutrophils, IgA antibodies predominantly induce neutrophil cell death. Overall, our study demonstrates a dysregulated myelopoietic response in severe COVID-19 and a potential role for IgA-dominant responses contributing to mortality.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Neutrófilos , Inmunoglobulina A , Inmunoglobulina G , Fenotipo
2.
J Emerg Nurs ; 48(4): 417-422, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35697551

RESUMEN

INTRODUCTION: ED health care professionals are at the frontline of evaluation and management of patients with acute, and often undifferentiated, illness. During the initial phase of the SARS-CoV-2 outbreak, there were concerns that ED health care professionals may have been at increased risk of exposure to SARS-CoV-2 due to difficulty in early identification of patients. This study assessed the seroprevalence of SARS-CoV-2 antibodies among ED health care professionals without confirmed history of COVID-19 infection at a quaternary academic medical center. METHODS: This study used a cross-sectional design. An ED health care professional was deemed eligible if they had worked at least 4 shifts in the adult emergency department from April 1, 2020, through May 31, 2020, were asymptomatic on the day of blood draw, and were not known to have had prior documented COVID-19 infection. The study period was December 17, 2020, to January 27, 2021. Eligible participants completed a questionnaire and had a blood sample drawn. Samples were run on the Roche Cobas Elecsys Anti-SARS-CoV-2 antibody assay. RESULTS: Of 103 health care professionals (16 attending physicians, 4 emergency residents, 16 advanced practice professionals, and 67 full-time emergency nurses), only 3 (2.9%; exact 95% CI, 0.6%-8.3%) were seropositive for SARS-CoV-2 antibodies. DISCUSSION: At this quaternary academic medical center, among those who volunteered to take an antibody test, there was a low seroprevalence of SARS-CoV-2 antibodies among ED clinicians who were asymptomatic at the time of blood draw and not known to have had prior COVID-19 infection.


Asunto(s)
COVID-19 , Adulto , Anticuerpos Antivirales , COVID-19/epidemiología , Estudios Transversales , Personal de Salud , Humanos , SARS-CoV-2 , Estudios Seroepidemiológicos
3.
mBio ; 13(4): e0157722, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35762593

RESUMEN

Persistent SARS-CoV-2 replication and systemic dissemination are linked to increased COVID-19 disease severity and mortality. However, the precise immune profiles that track with enhanced viral clearance, particularly from systemic RNAemia, remain incompletely defined. To define whether antibody characteristics, specificities, or functions that emerge during natural infection are linked to accelerated containment of viral replication, we examined the relationship of SARS-CoV-2-specific humoral immune evolution in the setting of SARS-CoV-2 plasma RNAemia, which is tightly associated with disease severity and death. On presentation to the emergency department, S-specific IgG3, IgA1, and Fc-γ-receptor (Fcγ R) binding antibodies were all inversely associated with higher baseline plasma RNAemia. Importantly, the rapid development of spike (S) and its subunit (S1/S2/receptor binding domain)-specific IgG, especially FcγR binding activity, were associated with clearance of RNAemia. These results point to a potentially critical and direct role for SARS-CoV-2-specific humoral immune clearance on viral dissemination, persistence, and disease outcome, providing novel insights for the development of more effective therapeutics to resolve COVID-19. IMPORTANCE We showed that persistent SARS-CoV-2 RNAemia is an independent predictor of severe COVID-19. We observed that SARS-CoV-2-targeted antibody maturation, specifically Fc-effector functions rather than neutralization, was strongly linked with the ability to rapidly clear viremia. This highlights the critical role of key humoral features in preventing viral dissemination or accelerating viremia clearance and provides insights for the design of next-generation monoclonal therapeutics. The main key points will be that (i) persistent SARS-CoV-2 plasma RNAemia independently predicts severe COVID-19 and (ii) specific humoral immune functions play a critical role in halting viral dissemination and controlling COVID-19 disease progression.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Cinética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Viremia
4.
Nature ; 606(7914): 576-584, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35385861

RESUMEN

SARS-CoV-2 can cause acute respiratory distress and death in some patients1. Although severe COVID-19 is linked to substantial inflammation, how SARS-CoV-2 triggers inflammation is not clear2. Monocytes and macrophages are sentinel cells that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D, leading to inflammatory death (pyroptosis) and the release of potent inflammatory mediators3. Here we show that about 6% of blood monocytes of patients with COVID-19 are infected with SARS-CoV-2. Monocyte infection depends on the uptake of antibody-opsonized virus by Fcγ receptors. The plasma of vaccine recipients does not promote antibody-dependent monocyte infection. SARS-CoV-2 begins to replicate in monocytes, but infection is aborted, and infectious virus is not detected in the supernatants of cultures of infected monocytes. Instead, infected cells undergo pyroptosis mediated by activation of NLRP3 and AIM2 inflammasomes, caspase-1 and gasdermin D. Moreover, tissue-resident macrophages, but not infected epithelial and endothelial cells, from lung autopsies from patients with COVID-19 have activated inflammasomes. Taken together, these findings suggest that antibody-mediated SARS-CoV-2 uptake by monocytes and macrophages triggers inflammatory cell death that aborts the production of infectious virus but causes systemic inflammation that contributes to COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Inflamación , Monocitos , Receptores de IgG , SARS-CoV-2 , COVID-19/virología , Caspasa 1/metabolismo , Proteínas de Unión al ADN , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/virología , Monocitos/metabolismo , Monocitos/virología , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Receptores de IgG/metabolismo
5.
Am J Respir Crit Care Med ; 205(5): 507-519, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878969

RESUMEN

Rationale: Alveolar and endothelial injury may be differentially associated with coronavirus disease (COVID-19) severity over time. Objectives: To describe alveolar and endothelial injury dynamics and associations with COVID-19 severity, cardiorenovascular injury, and outcomes. Methods: This single-center observational study enrolled patients with COVID-19 requiring respiratory support at emergency department presentation. More than 40 markers of alveolar (including receptor for advanced glycation endproducts [RAGE]), endothelial (including angiopoietin-2), and cardiorenovascular injury (including renin, kidney injury molecule-1, and troponin-I) were serially compared between invasively and spontaneously ventilated patients using mixed-effects repeated-measures models. Ventilatory ratios were calculated for intubated patients. Associations of biomarkers with modified World Health Organization scale at Day 28 were determined with multivariable proportional-odds regression. Measurements and Main Results: Of 225 patients, 74 (33%) received invasive ventilation at Day 0. RAGE was 1.80-fold higher in invasive ventilation patients at Day 0 (95% confidence interval [CI], 1.50-2.17) versus spontaneous ventilation, but decreased over time in all patients. Changes in alveolar markers did not correlate with changes in endothelial, cardiac, or renal injury markers. In contrast, endothelial markers were similar to lower at Day 0 for invasive ventilation versus spontaneous ventilation, but then increased over time only among intubated patients. In intubated patients, angiopoietin-2 was similar (fold difference, 1.02; 95% CI, 0.89-1.17) to nonintubated patients at Day 0 but 1.80-fold higher (95% CI, 1.56-2.06) at Day 3; cardiorenovascular injury markers showed similar patterns. Endothelial markers were not consistently associated with ventilatory ratios. Endothelial markers were more often significantly associated with 28-day outcomes than alveolar markers. Conclusions: Alveolar injury markers increase early. Endothelial injury markers increase later and are associated with cardiorenovascular injury and 28-day outcome. Alveolar and endothelial injury likely contribute at different times to disease progression in severe COVID-19.


Asunto(s)
Células Epiteliales Alveolares , COVID-19/fisiopatología , Endotelio/lesiones , Gravedad del Paciente , Alveolos Pulmonares/lesiones , Síndrome de Dificultad Respiratoria/fisiopatología , Adulto , Anciano , Biomarcadores/análisis , Resultados de Cuidados Críticos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistema Renina-Angiotensina , Respiración Artificial , SARS-CoV-2
7.
bioRxiv ; 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34642692

RESUMEN

Multiple studies have identified an association between neutrophils and COVID-19 disease severity; however, the mechanistic basis of this association remains incompletely understood. Here we collected 781 longitudinal blood samples from 306 hospitalized COVID-19 + patients, 78 COVID-19 âˆ' acute respiratory distress syndrome patients, and 8 healthy controls, and performed bulk RNA-sequencing of enriched neutrophils, plasma proteomics, cfDNA measurements and high throughput antibody profiling assays to investigate the relationship between neutrophil states and disease severity or death. We identified dynamic switches between six distinct neutrophil subtypes using non-negative matrix factorization (NMF) clustering. At days 3 and 7 post-hospitalization, patients with severe disease had an enrichment of a granulocytic myeloid derived suppressor cell-like state gene expression signature, while non-severe patients with resolved disease were enriched for a progenitor-like immature neutrophil state signature. Severe disease was associated with gene sets related to neutrophil degranulation, neutrophil extracellular trap (NET) signatures, distinct metabolic signatures, and enhanced neutrophil activation and generation of reactive oxygen species (ROS). We found that the majority of patients had a transient interferon-stimulated gene signature upon presentation to the emergency department (ED) defined here as Day 0, regardless of disease severity, which persisted only in patients who subsequently died. Humoral responses were identified as potential drivers of neutrophil effector functions, as enhanced antibody-dependent neutrophil phagocytosis and reduced NETosis was associated with elevated SARS-CoV-2-specific IgG1-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirmed that while patient-derived IgG antibodies mostly drove neutrophil phagocytosis and ROS production in healthy donor neutrophils, patient-derived IgA antibodies induced a predominant NETosis response. Overall, our study demonstrates neutrophil dysregulation in severe COVID-19 and a potential role for IgA-dominant responses in driving neutrophil effector functions in severe disease and mortality.

9.
Res Sq ; 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34401873

RESUMEN

SARS-CoV-2 causes acute respiratory distress that can progress to multiorgan failure and death in a minority of patients. Although severe COVID-19 disease is linked to exuberant inflammation, how SARS-CoV-2 triggers inflammation is not understood. Monocytes and macrophages are sentinel immune cells in the blood and tissue, respectively, that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D (GSDMD) pores, leading to inflammatory death (pyroptosis) and processing and release of IL-1 family cytokines, potent inflammatory mediators. Here we show that expression quantitative trait loci (eQTLs) linked to higher GSDMD expression increase the risk of severe COVID-19 disease (odds ratio, 1.3, p<0.005). We find that about 10% of blood monocytes in COVID-19 patients are infected with SARS-CoV-2. Monocyte infection depends on viral antibody opsonization and uptake of opsonized virus by the Fc receptor CD16. After uptake, SARS-CoV-2 begins to replicate in monocytes, as evidenced by detection of double-stranded RNA and subgenomic RNA and expression of a fluorescent reporter gene. However, infection is aborted, and infectious virus is not detected in infected monocyte supernatants or patient plasma. Instead, infected cells undergo inflammatory cell death (pyroptosis) mediated by activation of the NLRP3 and AIM2 inflammasomes, caspase-1 and GSDMD. Moreover, tissue-resident macrophages, but not infected epithelial cells, from COVID-19 lung autopsy specimens showed evidence of inflammasome activation. These findings taken together suggest that antibody-mediated SARS-CoV-2 infection of monocytes/macrophages triggers inflammatory cell death that aborts production of infectious virus but causes systemic inflammation that contributes to severe COVID-19 disease pathogenesis.

10.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196300

RESUMEN

BACKGROUNDSARS-CoV-2 plasma viremia has been associated with severe disease and death in COVID-19 in small-scale cohort studies. The mechanisms behind this association remain elusive.METHODSWe evaluated the relationship between SARS-CoV-2 viremia, disease outcome, and inflammatory and proteomic profiles in a cohort of COVID-19 emergency department participants. SARS-CoV-2 viral load was measured using a quantitative reverse transcription PCR-based platform. Proteomic data were generated with Proximity Extension Assay using the Olink platform.RESULTSThis study included 300 participants with nucleic acid test-confirmed COVID-19. Plasma SARS-CoV-2 viremia levels at the time of presentation predicted adverse disease outcomes, with an adjusted OR of 10.6 (95% CI 4.4-25.5, P < 0.001) for severe disease (mechanical ventilation and/or 28-day mortality) and 3.9 (95% CI 1.5-10.1, P = 0.006) for 28-day mortality. Proteomic analyses revealed prominent proteomic pathways associated with SARS-CoV-2 viremia, including upregulation of SARS-CoV-2 entry factors (ACE2, CTSL, FURIN), heightened markers of tissue damage to the lungs, gastrointestinal tract, and endothelium/vasculature, and alterations in coagulation pathways.CONCLUSIONThese results highlight the cascade of vascular and tissue damage associated with SARS-CoV-2 plasma viremia that underlies its ability to predict COVID-19 disease outcomes.FUNDINGMark and Lisa Schwartz; the National Institutes of Health (U19AI082630); the American Lung Association; the Executive Committee on Research at Massachusetts General Hospital; the Chan Zuckerberg Initiative; Arthur, Sandra, and Sarah Irving for the David P. Ryan, MD, Endowed Chair in Cancer Research; an EMBO Long-Term Fellowship (ALTF 486-2018); a Cancer Research Institute/Bristol Myers Squibb Fellowship (CRI2993); the Harvard Catalyst/Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences, NIH awards UL1TR001102 and UL1TR002541-01); and by the Harvard University Center for AIDS Research (National Institute of Allergy and Infectious Diseases, 5P30AI060354).


Asunto(s)
COVID-19/sangre , COVID-19/virología , SARS-CoV-2 , Viremia/sangre , Viremia/virología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Interacciones Microbiota-Huesped , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Pandemias , Pronóstico , Proteoma/metabolismo , Proteómica , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Internalización del Virus
11.
medRxiv ; 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34282425

RESUMEN

Coagulopathy and thromboembolism are known complications of SARS-CoV-2 infection. The mechanisms of COVID-19-associated hematologic complications involve endothelial cell and platelet dysfunction and have been intensively studied. We leveraged a prospectively collected acute COVID-19 biorepository to study the association of plasma levels of a comprehensive list of coagulation proteins with the occurrence of venous thromboembolic events (VTE). We included in our analysis 305 subjects with confirmed SARS-CoV-2 infection who presented to an urban Emergency Department with acute respiratory distress during the first COVID-19 surge in 2020; 13 (4.2%) were subsequently diagnosed with venous thromboembolism during hospitalization. Serial samples were obtained and assays were performed on two highly-multiplexed proteomic platforms. Nine coagulation proteins were differentially expressed in patients with thromboembolic events. P-selectin, a cell adhesion molecule on the surface of activated endothelial cells, displayed the strongest association with the diagnosis of VTE, independent of disease severity (p=0.0025). This supports the importance of endothelial activation in the mechanistic pathway of venous thromboembolism in COVID-19. P-selectin together with D-dimer upon hospital presentation provided better discriminative ability for VTE diagnosis than D-dimer alone.

12.
Sci Transl Med ; 13(598)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34103408

RESUMEN

Bacterial sepsis and severe COVID-19 share similar clinical manifestations and are both associated with dysregulation of the myeloid cell compartment. We previously reported an expanded CD14+ monocyte state, MS1, in patients with bacterial sepsis and validated expansion of this cell subpopulation in publicly available transcriptomics data. Here, using published datasets, we show that the gene expression program associated with MS1 correlated with sepsis severity and was up-regulated in monocytes from patients with severe COVID-19. To examine the ontogeny and function of MS1 cells, we developed a cellular model for inducing CD14+ MS1 monocytes from healthy bone marrow hematopoietic stem and progenitor cells (HSPCs). We found that plasma from patients with bacterial sepsis or COVID-19 induced myelopoiesis in HSPCs in vitro and expression of the MS1 gene program in monocytes and neutrophils that differentiated from these HSPCs. Furthermore, we found that plasma concentrations of IL-6, and to a lesser extent IL-10, correlated with increased myeloid cell output from HSPCs in vitro and enhanced expression of the MS1 gene program. We validated the requirement for these two cytokines to induce the MS1 gene program through CRISPR-Cas9 editing of their receptors in HSPCs. Using this cellular model system, we demonstrated that induced MS1 cells were broadly immunosuppressive and showed decreased responsiveness to stimulation with a synthetic RNA analog. Our in vitro study suggests a potential role for systemic cytokines in inducing myelopoiesis during severe bacterial or SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Trasplante de Células Madre Hematopoyéticas , Sepsis , Humanos , Células Mieloides , SARS-CoV-2
13.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33969320

RESUMEN

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

14.
medRxiv ; 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33655257

RESUMEN

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) plasma viremia has been associated with severe disease and death in coronavirus disease 2019 (COVID-19) in small-scale cohort studies. The mechanisms behind this association remain elusive. METHODS: We evaluated the relationship between SARS-CoV-2 viremia, disease outcome, inflammatory and proteomic profiles in a cohort of COVID-19 emergency department participants. SARS-CoV-2 viral load was measured using qRT-PCR based platform. Proteomic data were generated with Proximity Extension Assay (PEA) using the Olink platform. RESULTS: Three hundred participants with nucleic acid test-confirmed COVID-19 were included in this study. Levels of plasma SARS-CoV-2 viremia at the time of presentation predicted adverse disease outcomes, with an adjusted odds ratio (aOR) of 10.6 (95% confidence interval [CI] 4.4, 25.5, P<0.001) for severe disease (mechanical ventilation and/or 28-day mortality) and aOR of 3.9 (95%CI 1.5, 10.1, P=0.006) for 28-day mortality. Proteomic analyses revealed prominent proteomic pathways associated with SARS-CoV-2 viremia, including upregulation of SARS-CoV-2 entry factors (ACE2, CTSL, FURIN), heightened markers of tissue damage to the lungs, gastrointestinal tract, endothelium/vasculature and alterations in coagulation pathways. CONCLUSIONS: These results highlight the cascade of vascular and tissue damage associated with SARS-CoV-2 plasma viremia that underlies its ability to predict COVID-19 disease outcomes.

15.
bioRxiv ; 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33173871

RESUMEN

COVID-19 has caused over 1 million deaths globally, yet the cellular mechanisms underlying severe disease remain poorly understood. By analyzing several thousand plasma proteins in 306 COVID-19 patients and 78 symptomatic controls over serial timepoints using two complementary approaches, we uncover COVID-19 host immune and non-immune proteins not previously linked to this disease. Integration of plasma proteomics with nine published scRNAseq datasets shows that SARS-CoV-2 infection upregulates monocyte/macrophage, plasmablast, and T cell effector proteins. By comparing patients who died to severely ill patients who survived, we identify dynamic immunomodulatory and tissue-associated proteins associated with survival, providing insights into which host responses are beneficial and which are detrimental to survival. We identify intracellular death signatures from specific tissues and cell types, and by associating these with angiotensin converting enzyme 2 (ACE2) expression, we map tissue damage associated with severe disease and propose which damage results from direct viral infection rather than from indirect effects of illness. We find that disease severity in lung tissue is driven by myeloid cell phenotypes and cell-cell interactions with lung epithelial cells and T cells. Based on these results, we propose a model of immune and epithelial cell interactions that drive cell-type specific and tissue-specific damage in severe COVID-19.

16.
Science ; 370(6520)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32994364

RESUMEN

Understanding humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics, therapeutics, and vaccines. Deep serological profiling of 232 coronavirus disease 2019 (COVID-19) patients and 190 pre-COVID-19 era controls using VirScan revealed more than 800 epitopes in the SARS-CoV-2 proteome, including 10 epitopes likely recognized by neutralizing antibodies. Preexisting antibodies in controls recognized SARS-CoV-2 ORF1, whereas only COVID-19 patient antibodies primarily recognized spike protein and nucleoprotein. A machine learning model trained on VirScan data predicted SARS-CoV-2 exposure history with 99% sensitivity and 98% specificity; a rapid Luminex-based diagnostic was developed from the most discriminatory SARS-CoV-2 peptides. Individuals with more severe COVID-19 exhibited stronger and broader SARS-CoV-2 responses, weaker antibody responses to prior infections, and higher incidence of cytomegalovirus and herpes simplex virus 1, possibly influenced by demographic covariates. Among hospitalized patients, males produce stronger SARS-CoV-2 antibody responses than females.


Asunto(s)
COVID-19/inmunología , Mapeo Epitopo , Epítopos/inmunología , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos , COVID-19/sangre , Prueba Serológica para COVID-19 , Reacciones Cruzadas , Microscopía por Crioelectrón , Epítopos/química , Epítopos/genética , Femenino , Humanos , Masculino , Conformación Proteica , Seroconversión
17.
bioRxiv ; 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32908980

RESUMEN

A recent estimate suggests that one in five deaths globally are associated with sepsis 1 . To date, no targeted treatment is available for this syndrome, likely due to substantial patient heterogeneity 2,3 and our lack of insight into sepsis immunopathology 4 . These issues are highlighted by the current COVID-19 pandemic, wherein many clinical manifestations of severe SARS-CoV-2 infection parallel bacterial sepsis 5-8 . We previously reported an expanded CD14+ monocyte state, MS1, in patients with bacterial sepsis or non-infectious critical illness, and validated its expansion in sepsis across thousands of patients using public transcriptomic data 9 . Despite its marked expansion in the circulation of bacterial sepsis patients, its relevance to viral sepsis and association with disease outcomes have not been examined. In addition, the ontogeny and function of this monocyte state remain poorly characterized. Using public transcriptomic data, we show that the expression of the MS1 program is associated with sepsis mortality and is up-regulated in monocytes from patients with severe COVID-19. We found that blood plasma from bacterial sepsis or COVID-19 patients with severe disease induces emergency myelopoiesis and expression of the MS1 program, which are dependent on the cytokines IL-6 and IL-10. Finally, we demonstrate that MS1 cells are broadly immunosuppressive, similar to monocytic myeloid-derived suppressor cells (MDSCs), and have decreased responsiveness to stimulation. Our findings highlight the utility of regulatory myeloid cells in sepsis prognosis, and the role of systemic cytokines in inducing emergency myelopoiesis during severe bacterial and SARS-CoV-2 infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...