Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 9(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975710

RESUMEN

One of the emerging water desalination techniques relies on the compression of a polyelectrolyte gel. The pressures needed reach tens of bars, which are too high for many applications, damage the gel and prevent its reuse. Here, we study the process by means of coarse-grained simulations of hydrophobic weak polyelectrolyte gels and show that the necessary pressures can be lowered to only a few bars. We show that the dependence of applied pressure on the gel density contains a plateau indicating a phase separation. The phase separation was also confirmed by an analytical mean-field theory. The results of our study show that changes in the pH or salinity can induce the phase transition in the gel. We also found that ionization of the gel enhances its ion capacity, whereas increasing the gel hydrophobicity lowers the pressure required for gel compression. Therefore, combining both strategies enables the optimization of polyelectrolyte gel compression for water desalination purposes.

2.
Soft Matter ; 17(3): 580-591, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33200761

RESUMEN

Computer-aided modeling is a systematic approach to grasp the physics of macromolecules, but it remains essential to know when to trust the results and when not. For a polymer star, we consider three approaches: (i) Molecular Dynamics (MD) simulations and implementing a coarse-grained model, (ii) the self-consistent field approach based on a mean-field approximation and implementing the lattice model due to Scheutjens and Fleer (SF-SCF) and (iii) novel hybrid Monte Carlo self-consistent field (MC-SCF) method, which combines a coarse-grained model driven by a Monte Carlo method and a mean-field representation driven by SF-SCF. We compare the performance of these approaches under a wide range of solvent qualities. The MD approach is formally the most exact but suffers from reasonable convergence. The mean-field approach works similarly in all solvent qualities but is quantitatively least accurate. The MC-SCF hybrid allows us to combine the benefits of the simulation route and the effective performance of SCF. We consider the center-to-end distance Rce, the radius of gyration Rg2 of the star and the polymer density profiles φ(r) of polymer-segments in it. All three methods show a good qualitative agreement one to another. The MC-SCF method is in good agreement with the scaling predictions in the whole range of solvent quality values showing that it grasps the essential physics while remaining computationally in bounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...