Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Sci Pollut Res Int ; 31(14): 21752-21764, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393570

RESUMEN

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is routinely used as a rapid and cost-effective method for pathogen identification in clinical settings. In comparison, its performance in other microbiological fields, such as environmental microbiology, is still being tested, although isolates of environmental microbes are essential for in-depth in vivo studies of their biology, including biotechnological applications. We investigated the applicability of MALDI-TOF MS for the identification of bacterial isolates from a highly oligotrophic environment - Dinaric Karst caves, which likely harbor specific microorganisms. We cultured bacteria from the shell surface of the endemic mussel Congeria jalzici, one of the three known cave mussels in the world that lives in the Dinaric karst underground. The bacterial isolates were obtained by swabbing the shell surface of mussels living in microhabitats with different amounts of water: 10 air-exposed mussels, 10 submerged mussels, and 10 mussels in the hygropetric zone. A collection of 87 pure culture isolates was obtained, mostly belonging to the phylum Bacillota (72%), followed by Pseudomonadota (16%), Actinomycetota (11%), and Bacteroidota (1%). We compared the results of MALDI-TOF MS identification (Bruker databases DB-5989 and version 11, v11) with the results of 16S rDNA-based phylogenetic analysis, a standard procedure for bacterial identification. Identification to the genus level based on 16S rDNA was possible for all isolates and clearly outperformed the results from MALDI-TOF MS, although the updated MALDI-TOF MS database v11 gave better results than the DB-5989 version (85% versus 62%). However, identification to the species-level by 16S rDNA sequencing was achieved for only 17% of isolates, compared with 14% and 40% for the MALDI-TOF MS databases DB-5989 and v11 database, respectively. In conclusion, our results suggest that continued enrichment of MALDI-TOF MS libraries will result with this method soon becoming a rapid, accurate, and efficient tool for assessing the diversity of culturable bacteria from different environmental niches.


Asunto(s)
Bivalvos , Cuevas , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Filogenia , Bacterias/genética , ADN Ribosómico
2.
Front Microbiol ; 14: 1151107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275156

RESUMEN

Malassezia pachydermatis (phylum Basidiomycota, class Malasseziomycetes) is a zoophilic opportunistic pathogen with recognized potential for invasive infections in humans. Although this pathogenic yeast is widespread in nature, it has been primarily studied in domestic animals, so available data on its genotypes in the wild are limited. In this study, 80 yeast isolates recovered from 42 brown bears (Ursus arctos) were identified as M. pachydermatis by a culture-based approach. MALDI-TOF mass spectrometry (MS) was used to endorse conventional identification. The majority of samples exhibited a high score fluctuation, with 42.5% of isolates generating the best scores in the range confident only for genus identification. However, the use of young biomass significantly improved the identification of M. pachydermatis at the species confidence level (98.8%). Importantly, the same MALDI-TOF MS efficiency would be achieved regardless of colony age if the cut-off value was lowered to ≥1.7. Genotyping of LSU, ITS1, CHS2, and ß-tubulin markers identified four distinct genotypes in M. pachydermatis isolates. The most prevalent among them was the genotype previously found in dogs, indicating its transmission potential and adaptation to distantly related hosts. The other three genotypes are described for the first time in this study. However, only one of the genotypes consisted of all four loci with bear-specific sequences, indicating the formation of a strain specifically adapted to brown bears. Finally, we evaluated the specificity of the spectral profiles of the detected genotypes. MALDI-TOF MS exhibited great potential to detect subtle differences between all M. pachydermatis isolates and revealed distinct spectral profiles of bear-specific genotypes.

3.
Mar Pollut Bull ; 187: 114592, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36657339

RESUMEN

Mediterranean Sea is the sixth largest area of marine litter accumulation in the world, and plastic pollution is a growing problem in its Adriatic sub-basin. The aim of the present study was to evaluate the cultivable microbiota associated with plastic litter collected by commercial fishing trawlers in the south-eastern Adriatic Sea in comparison with microbiota in seawater and sediment. Plastic litter in the sea contains an autochthonous microbiota that is different from that of the surrounding seawater and sediment. Vibrio abundance was higher on plastic litter than in surrounding seawater and sediment. All isolated Vibrio showing resistance to ampicillin and vancomycin, while resistance to other antibiotics depended on the isolated species. Overall, this study provides for the first time information on the cultivable microbiota associated with plastic litter collected by commercial fishing trawlers and provides a data base for further studies.


Asunto(s)
Monitoreo del Ambiente , Caza , Plásticos , Contaminación Ambiental , Mar Mediterráneo , Farmacorresistencia Microbiana , Residuos/análisis
4.
Mass Spectrom Rev ; 42(5): 1589-1603, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34642960

RESUMEN

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an excellent tool for bacterial identification. It allows high throughput, sensitive and specific applications in clinical diagnostics and environmental research. Currently, there is no optimal standardized protocol for sample preparation and culture conditions to profile bacteria. The performance of MALDI-TOF MS is affected by several variables, such as sample preparation, culture media and culture conditions, incubation time/growth stage, incubation temperature, high salt content, blood in the culture media, and others. This review thus aims to clarify why a uniformed protocol is not plausible, to assess the effects these factors have on MALDI-TOF MS identification score, and discuss possible optimizations for its methodology, in relation to specific bacterial representatives and strain requirements.

5.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36430861

RESUMEN

Human milk not only provides a perfect balance of nutrients to meet all the needs of the infant in the first months of life but also contains a variety of bacteria that play a key role in tailoring the neonatal faecal microbiome. Microbiome analysis of human milk and infant faeces from mother-breastfed infant pairs was performed by sequencing the V1-V3 region of the 16S rRNA gene using the Illumina MiSeq platform. According to the results, there is a connection in the composition of the microbiome in each mother-breastfed infant pair, supporting the hypothesis that the infant's gut is colonised with bacteria from human milk. MiSeq sequencing also revealed high biodiversity of the human milk microbiome and the infant faecal microbiome, whose composition changes during lactation and infant development, respectively. A total of 28 genetically distinct strains were selected by hierarchical cluster analysis of RAPD-PCR (Random Amplified Polymorphic DNA-Polymerase Chain Reaction) electrophoresis profiles of 100 strains isolated from human milk and identified by 16S RNA sequencing. Since certain cellular molecules may support their use as probiotics, the next focus was to detect (S)-layer proteins, bacteriocins and exopolysaccharides (EPSs) that have potential as therapeutic biomolecules. SDS-PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis) coupled with LC-MS (liquid chromatography-mass spectrometry) analysis revealed that four Levilactobacillus brevis strains expressed S-layer proteins, which were identified for the first time in strains isolated from human milk. The potential biosynthesis of plantaricin was detected in six Lactiplantibacillus plantarum strains by PCR analysis and in vitro antibacterial studies. 1H NMR (Proton Nuclear Magnetic Resonance) analysis confirmed EPS production in only one strain, Limosilactobacillus fermentum MC1. The overall microbiome analysis suggests that human milk contributes to the establishment of the intestinal microbiota of infants. In addition, it is a promising source of novel Lactobacillus strains expressing specific functional biomolecules.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Lactante , Recién Nacido , Femenino , Niño , Humanos , Leche Humana/microbiología , ARN Ribosómico 16S/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Microbiota/genética , Bacterias/genética
6.
Microorganisms ; 10(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363751

RESUMEN

Vibrio species are widely distributed and can be potentially pathogenic to aquatic organisms. In this study, we isolated Vibrio spp. from environmental samples (seawater, sediment, and fish swabs) collected over a three-year period from a fish farm in Mali Ston Bay in the Adriatic Sea, Croatia, and assess their distribution. A total of 48 seawater samples and 12 sediment samples, as well as gill and skin swabs from 110 farmed European seabass, were analysed for the presence of Vibrio. Vibrio strains were identified to the species level by MALDI TOF MS. The analysis revealed that V. alginolyticus was the predominant species in European seabass, followed by V. anguillarum. V. alginolyticus was isolated from the sediments, along with V. gigantis and V. pomeroyi, while V. chagasii, V. cyclitrophicus, V. fortis, V. gigantis, V. harveyi, V. pelagius, and V. pomeroyi were isolated from seawater. V. anguillarum was isolated only twice during two different spring seasons, once from a diseased sea bass and the second time from a healthy sea bass. We analysed these two isolates and found that they differ both genetically and in terms of resistance to antibiotics. Our results confirm the seasonality of vibriosis incidence and the presence of the pathogenic V. anguillarum, which increases the risk of vibriosis.

7.
Food Technol Biotechnol ; 60(2): 135-144, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35910268

RESUMEN

Research background: Oral microbiota has become an important factor in obesity, but its association with obesity-related diseases and serum 25-hydroxy vitamin D [25(OH)D] and B complex amounts is still uncertain. The main aim of the paper is to determine the variation in oral microbiota composition as a response to the vitamin status and obesity-related diseases in obese females from Croatia. We hypothesized that the prevalence of probiotic or pathogenic bacteria in the oral cavity of obese women in Croatia depends on the amounts of vitamin B9 (folic acid), B12 and 25(OH)D in serum and/or hypertension, diabetes and prediabetes diagnosis. Experimental approach: To test the defined research hypothesis, female individuals with body mass index (BMI)≥30 kg/m2 (N=70) were recruited to participate in this study. Obese women were divided into groups according to BMI value, diagnosis of obesity-related diseases and amount of micronutrient in blood. For the quantitative determination of folic acid, vitamin B12 and 25(OH)D in serum, an electrochemiluminescence protein binding assay (ECLIA) was performed. Microorganisms isolated from the saliva of obese women were analyzed by MALDI-TOF mass spectrometer. Results and conclusions: The presented results do not support the hypothesis that the prevalence of probiotic or pathogenic bacteria in the oral cavity of obese women in Croatia depends on the amount of micronutrients. On the other hand, hypertension and diabetes/prediabetes favour the growth of oral pathogens, specifically increased levels of Candida sp. Novelty and scientific contribution: To the best of our knowledge, this is the first study showing the relationship between obesity, micronutrient amount, oral microbiota composition, and the incidence of obesity-related disease. We included only obese women from Croatia, so it is regionally specific. Also, we have shown that oral microbiota composition is not connected with micronutrient deficiencies but only with obesity-related diseases.

8.
Environ Sci Pollut Res Int ; 29(55): 82986-83003, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35761132

RESUMEN

Bacteria from the genus Shewanella are inhabitants of marine and freshwater ecosystems, recognized fish spoilage bacteria, but less known as fish disease agents. Shewanella spp. isolated from fish living in waters close to effluents of a wastewater treatment plant (WWTP) were not previously characterized. We have tested Shewanella isolates from WWTP-affected waters and related fish. Genotypic characterization identified most strains as S. baltica and S. oneidensis. In order to investigate the sensibility and accuracy of their MALDI-TOF MS identification, they were grown on two culture media enriched by various NaCl concentrations, incubated at different temperatures and duration. We analyzed their antimicrobial susceptibility on a panel of antimicrobial drugs and capacity for biofilm production. With a view to demonstrate their capacity to produce fatty acids, we assessed the impact of different culture media on their lipid profile. We performed zebrafish embryotoxicity tests to simulate the environmental infection of the earliest life stages in S. baltica-contaminated waters. The best MALDI-TOF MS identification scores were for strains cultivated on TSA for 24 h at 22 °C and with supplementation of 1.5% NaCl. Less than 17% of isolates demonstrated antimicrobial resistance. Most isolates were weak biofilm producers. Strain-to-strain variation of MIC and MBC was low. The major fatty acids were C15:0, C16:0, C16:1, C17:1, and iC15:0. Exposure of Danio rerio to different S. baltica concentrations induced severe effects on zebrafish development: decreased heartbeat rate, locomotor activity, and melanin pigmentation. S. baltica passed through chorionic pores of zebrafish.


Asunto(s)
Shewanella , Purificación del Agua , Animales , Pez Cebra , Ecosistema , Cloruro de Sodio , Medios de Cultivo , Ácidos Grasos
9.
PLoS One ; 17(6): e0269423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35657908

RESUMEN

In this study, the purposefulness of using the API20E biochemical identification system as a supportive tool for enhancing the discrimination of environmental bacteria by MALDI-TOF MS method was evaluated. The identification results of MALDI-TOF MS and API20E for 321 Gram-negative strains isolated from the riverine freshwater and its sediment, and from the tissues of fish from the same water body were compared. Of 190 isolates identified with probable to highly probable species-level identification, and secure genus to probable species identification, 14 isolates (7.37%) had identification score over 2.300, and from the same group 19 isolates (10%) had excellent or very good identification to the genus by API20E system. With regard to agreement at genus level, out of 231 strains with genus designation available by API20E at any level of identification reliability, MALDI-TOF MS genus identification agreed in 163 (70.6%) strains. Of these, 135 (82.8%) were Aeromonas species and the remaining isolates belonged to 7 different genera. Although API20E resulted in frequent misidentification due to a limited profile index, its individual biochemical reactions might contribute to overall characterization of isolates. For example, for all reliable A. hydrophila strain identifications with MALDI-TOF MS, ONPG, GLU and OX reactions were unarguably positive for all fish and water/sediment isolates, whereas only fish isolates yielded additional 100% positive TDA and VP reactions. Thus, after initial identification with MALDI-TOF MS, environmental isolates with lower identification scores should be further analyzed. Before commencing confirmatory testing with nucleic acid-based methods, biochemical API20E tests could be applied as a purposeful and inexpensive identification support in targeting better identification accuracy. In this study, this was particularly evident with A. hydrophila, Chryseobacterium sp. and Pseudomonas sp. This identification strategy could significantly resolve methodological and cost-related shortcomings frequently occurring with large number of environmental isolates.


Asunto(s)
Aeromonas , Animales , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Agua
10.
Foods ; 11(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35627029

RESUMEN

Yersinia enterocolitica is one of the priority biological hazards in pork inspection. Persistence of the pathogen, including strains resistant to antimicrobials, should be evaluated in pigs from different housing systems for risk ranking of farms. In this 2019 study, tonsils were collected from 234 pigs, of which 69 (29.5%) were fattened on 3 big integrated farms, 130 (55.5%) on 10 medium-sized farms, and 35 (15%) on 13 small family farms. In addition, 92 pork cuts and minced meat samples from the same farms were tested for the presence of Y. enterocolitica using the culture method. Phenotypic and genetic characteristics of the isolates were compared with previously collected isolates from 2014. The overall prevalence of Y. enterocolitica in pig tonsils was 43% [95% CI 36.7−49.7]. In pigs from big integrated, medium-sized, and small family farms, the prevalence was 29%, 52%, and 40%, respectively. All retail samples of portioned and minced pork tested negative for pathogenic Y. enterocolitica, likely due to high hygienic standards in slaughterhouses/cutting meat or low sensitivity of culture methods in these matrices. The highest recovery rate of the pathogen from tonsils was found when alkali-treated PSB and CIN agar were combined. The biosecurity category of integrated and medium farms did not affect the differences in prevalence of Y. enterocolitica (p > 0.05), in contrast to family farms. Pathogenic ail-positive Y. enterocolitica biotype 4 serotype O:3 persisted in the tonsils of pigs regardless of the type of farm, slaughterhouse, and year of isolation 2014 and 2019. PFGE typing revealed the high genetic concordance (80.6 to 100%) of all the Y. enterocolitica 4/O:3 isolates. A statistically significant higher prevalence of multidrug-resistant Y. enterocolitica 4/O:3 isolates was detected in the tonsils of pigs from big integrated farms compared to the other farm types (p < 0.05), with predominant and increasing resistance to nalidixic acid, chloramphenicol, and streptomycin. This study demonstrated multidrug resistance of the pathogen in pigs likely due to more antimicrobial pressure on big farms, with intriguing resistance to some clinically relevant antimicrobials used in the treatment of yersiniosis in humans.

11.
Front Microbiol ; 13: 1091964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713227

RESUMEN

Several species in the genus Legionella are known to cause an acute pneumonia when the aerosols containing the bacteria from man-made water systems are inhaled. The disease is usually caused by Legionella pneumophila, but other species have been implicated in the infection. The disease is frequently manifested as an outbreak, which means several people are affected when exposed to the common source of Legionella contamination. Therefor environmental surveillance which includes isolation and identification of Legionella is performed routinely. However, usually no molecular or genome-based methods are employed in further characterization of the isolates during routine environmental monitoring. During several years of such monitoring, isolates from different geographical locations were collected and 39 of them were sequenced by hybrid de novo approach utilizing short and long sequencing reads. In addition, the isolates were typed by standard culture and MALDI-TOF method. The sequencing reads were assembled and annotated to produce high-quality genomes. By employing discriminatory genome typing, four potential new species in the Legionella genus were identified, which are yet to be biochemically and morphologically characterized. Moreover, functional annotations concerning virulence and antimicrobial resistance were performed on the sequenced genomes. The study contributes to the knowledge on little-known non-pneumophila species present in man-made water systems and establishes support for future genetic relatedness studies as well as understanding of their pathogenic potential.

12.
J Hazard Mater ; 402: 123437, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32712355

RESUMEN

Novel hyper-resistant bacteria were isolated from the Crven Dol mine (Allchar, North Macedonia), arsenic-rich extreme environment. Bacteria were recovered from a secondary mineral mixture, an alteration of hydrothermal realgar rich in arsenates (pharmacolite, hornesite, and talmessite). The sample was recovered from the dark part of the mine at 28 m depth. Three bacterial strains and a bacterial consortium were isolated for their capacity to survive exposure to 32 g/L (209 mM) of arsenite, and 176 g/L (564 mM) of arsenate. The 16S rRNA gene analysis identified bacterial isolates as Stenotrophomonas sp. and two Microbacterium spp. This analysis also revealed that bacterial consortium comprise two Bacteriodetes exhibiting similarity to Olivibacter ginsengisoli and to uncultured bacterium, and one γ-proteobacteria with similarity to Luteimonas sp. Among all isolates Stenotrophomonas sp. exhibited the highest tolerance to As compound as well as the capacity to accumulate As inside the cells. Analysis of genes involved in As-resistance showed that recovered isolates possess the genes encoding the ArsB, Acr3(1) and Acr3(2) proteins, indicating that at least a part of their resistance could be ascribed to As-efflux systems described in isolates obtained from human-polluted environments.


Asunto(s)
Arsénico , Arsenitos , Arsénico/análisis , Arsénico/toxicidad , Arsenitos/toxicidad , Bacterias/genética , Bacteroidetes , Farmacorresistencia Bacteriana/genética , Ambientes Extremos , Humanos , Filogenia , ARN Ribosómico 16S/genética , República de Macedonia del Norte
13.
Arh Hig Rada Toksikol ; 71(2): 146-151, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32975101

RESUMEN

Due to the development of resistance to antimicrobial agents, bacterium Acinetobacter baumannii is nowadays a leading cause of nosocomial outbreaks. Clinically relevant A. baumannii outside hospital settings including natural soils affected by human waste represents a public-health risk for humans and animals. The aim of this study was to investigate the potential of metal-loaded zeolites to eliminate viable A. baumannii from artificially contaminated natural soils. A. baumannii isolate was subjected to the activity of natural zeolitised tuff (NZ) and Cu-modified (CuNZ) or Ag-modified zeolite (AgNZ) in wet, slightly acidic terra rossa and slightly alkaline red palaeosol. A. baumannii survived in terra rossa and red palaeosol supplemented with 1 wt% of NZ for seven days and four months, respectively. The addition of 1 wt% of CuNZ to terra rossa and red palaeosol shortened the survival of A. baumannii to three and 14 days, respectively. The addition of 0.1 wt% of AgNZ to both soils resulted in complete removal of viable A. baumannii within 1 h of contact, while the total native heterotrophic bacterial counts remained high. Since AgNZ is prepared with a simple modification of cost-effective and environmentally friendly natural zeolite, it is a promising material for the remediation of soils contaminated with pandrug-resistant A. baumannii.


Asunto(s)
Acinetobacter baumannii , Zeolitas , Animales , Antibacterianos , Bacterias , Humanos , Metales , Pruebas de Sensibilidad Microbiana , Suelo
14.
Avian Pathol ; 49(5): 467-475, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32375499

RESUMEN

Gallibacterium anatis is considered one of the most common bacterial causative agents of reproductive tract disorders in poultry. In this study, phylogenetic analysis of partial rpoB sequences and biotyping using MALDI-TOF MS was done in order to investigate the genetic diversity of Gallibacterium isolates from 13 farms with different biosecurity measures and management practices. Sampling was done as a part of regular monitoring, except for Farms 9-13 that were included in the study to represent extensive production systems with lowest biosecurity levels. Pharyngeal and cloacal swabs were taken from live birds, while swabs from trachea, liver, peritoneum and oviduct were taken during necropsies. After cultivation and identification, strains from each farm were randomly selected for sequencing and biotyping. Both results showed high level of heterogeneity among the isolates originating from farms with low biosecurity levels, unlike isolates from farms with higher biosecurity levels and proper management that were more closely related and clustered together. Such correlation was statistically significant. Low biosecurity levels enable horizontal transmission of the pathogens, as well as gene transfer. The results confirm the importance of adequate biosecurity measures and management on poultry farms as they greatly affect the genetic diversity of the pathogens. Therefore, implementation of basic biosecurity measures could help control the heterogeneity of Gallibacterium strains, which would alleviate control of the infection prevalence on farms through immunoprophylaxis, and consequently improve poultry production. Also, the genetic diversity of G. anatis on poultry farms could be a good bioindicator of management practices and biosecurity measures used. RESEARCH HIGHLIGHTS High correlation between low biosecurity and high diversity of Gallibacterium anatis. Diversity of Gallibacterium is a good bioindicator of management practices on farms.


Asunto(s)
Variación Genética , Infecciones por Pasteurellaceae/veterinaria , Pasteurellaceae/genética , Enfermedades de las Aves de Corral/microbiología , Infecciones del Sistema Genital/veterinaria , Animales , Granjas , Femenino , Oviductos/microbiología , Infecciones por Pasteurellaceae/epidemiología , Infecciones por Pasteurellaceae/microbiología , Filogenia , Aves de Corral , Enfermedades de las Aves de Corral/epidemiología , Infecciones del Sistema Genital/epidemiología , Infecciones del Sistema Genital/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/veterinaria
15.
PLoS One ; 14(11): e0225343, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31738803

RESUMEN

Vibrio (Listonella) anguillarum is a pathogenic bacterium causing septicaemia in a wide range of marine organisms and inducing severe mortalities, thus it is crucial to conduct its accurate and rapid identification. The aim of this study was to assess MALDI-TOF MS as a method of choice for identification of clinical V. anguillarum isolates from affected marine fish. Since the method accuracy might be influenced by the type of the medium used, as well as by the incubation conditions, we tested V. anguillarum isolates grown on standard media with and without the addition of NaCl, cultured at three incubation temperatures, and at three incubation periods. The best scores were retrieved for V. anguillarum strains grown on NaCl-supplemented tryptone soy agar (TSA) at 22°C and incubated for 48h (100% identification to species level; overall score 2.232), followed by incubation at 37°C and 48h (100% to species level; score 2.192). The strains grown on non-supplemented TSA gave the best readings when incubated at 22°C for 72h (100% identification to species level; overall score 2.182), followed by incubation at 15°C for 72h (100% to species level; score 2.160). Unreliable identifications and no-identifications were growing with the incubation duration at 37°C, on both media, amounting to 88.89% for 7d incubation on supplemented TSA, and 92.60% for 7d incubation on non-supplemented TSA. The age of the cultured strains and use of media significantly impacted the mass spectra, demonstrating that for reliable identification, MALDI-TOF MS protein fingerprinting with the on-target extraction should be performed on strains grown on a NaCl-supplemented medium at temperatures between 15 and 22°C, incubated for 48-72 hours.


Asunto(s)
Lubina/microbiología , Dorada/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Vibrio/clasificación , Animales , Análisis por Conglomerados
16.
J Fish Dis ; 42(8): 1201-1209, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31192462

RESUMEN

MALDI-TOF MS was tested for the identification of Photobacterium damselae subsp. piscicida on isolates grown on two media, cultured at three incubation times and applied on the target plate by the direct sample spotting (DS), by the on-target extraction (OTE) and by the full extraction (FE) method, in triplicates. The identification of samples grown on blood agar (BA) outperformed identification on tryptic soya agar (TSA) by 0.64% for DS and OTE. The OTE gave the highest scores in both culture media, all incubation times and replicates. Reliable 24-hr species identification was 61.54%, 84.61% and 53.85% for samples grown on TSA and identified by DS, OTE and FE, respectively. For isolates grown on BA, they were 76.92%, 96.15% and 30.77%, respectively. When identified by OTE, the 48-hr identification was 93.58%, but for 72 hr declined to 71.79%. The reliable identification with the highest score from the first measurement was 100% only for OTE from BA (24 hr), whereas OTE from TSA gave 84.61% (24 hr), 76.92% (48 hr) and 84.61% (72 hr). The reliable MALDI-TOF MS identification of Ph. damselae subsp. piscicida is incubation time, media, target plate preparation and replicate-dependent.


Asunto(s)
Lubina , Enfermedades de los Peces/diagnóstico , Infecciones por Bacterias Gramnegativas/veterinaria , Photobacterium/aislamiento & purificación , Dorada , Animales , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/diagnóstico , Infecciones por Bacterias Gramnegativas/microbiología
17.
Extremophiles ; 23(4): 399-405, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30949775

RESUMEN

The strain Pseudomonas aeruginosa san ai, isolated from an extreme environment (industrial mineral cutting oil, pH 10), is able to survive and persist in the presence of a variety of pollutants such as heavy metals and organic chemicals. The genome of P. aeruginosa san ai is 6.98 Mbp long with a GC content of 66.08% and 6485 protein encoding genes. A large number of genes associated with proteins, responsible for microbial resistance to heavy metal ions and involved in catabolism of toxic aromatic organic compounds were identified. P. aeruginosa san ai is a highly cadmium-resistant strain. Proteome analysis of biomass after cadmium exposal confirmed a high tolerance to sublethal concentrations of cadmium (100 mg/L), based on: extracellular biosorption, bioaccumulation, biofilm formation, controlled siderophore production and a pronounced metalloprotein synthesis. Proteins responsible for survival in osmostress conditions during exposure to elevated concentrations of cadmium (200 mg/L) demonstrate a strong genetic potential of P. aeruginosa san ai for survival and adaptation. Sequencing of P. aeruginosa san ai genome provides valuable insights into the evolution and adaptation of this microbe to environmental extremes at the whole-genome level, as well as how to optimally use the strain in bioremediation of chemically polluted sites.


Asunto(s)
Cadmio/toxicidad , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano , Pseudomonas aeruginosa/genética , Contaminación Ambiental , Anotación de Secuencia Molecular , Proteoma/genética , Proteoma/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación
18.
Metallomics ; 11(6): 1060-1078, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31011736

RESUMEN

Metals play crucial physiological roles, but they can also cause irreparable toxic effects through binding to important cellular biomolecules in aquatic organisms. The aim of this study was to determine the exact molecular masses and to identify several selected metal-binding biomolecules in hepatic and gill cytosols of Vardar chub (Squalius vardarensis Karaman, 1928). Methods applied for the achievement of this goal were SEC-AEC-HPLC for two-dimensional separation of cytosolic biomolecules, HR ICP-MS for metal measurements, and mass spectrometry (MALDI-TOF-MS and LC-MS/MS) for biomolecule mass determination and identification. The analyzed biomolecules included: Fe-binding biomolecules, which were identified as hemoglobin subunit ß in the liver (molecular masses of ∼15 kDa), and hemoglobin subunits α and ß in the gills (molecular masses of ∼11 kDa, ∼13 kDa and ∼15 kDa); heat-stable Cd-binding biomolecules, which were identified as MT isoforms MT-I and MT-II (molecular mass of ∼6.0 kDa in both liver and gills, and an additional 4.9 kDa isoform in the gills); and heat-stable Mo-binding biomolecules of molecular masses equal to 3.3 kDa (in the gills) and 8.5 kDa (in the liver). An important finding of this study was the obvious presence of different isoforms of the same biomolecules in the liver and gills. This was, among others, manifested through the absence of Zn binding to MTs only in the gills, indicating that the same type of biomolecule can be responsible for different functions in different organs. Thus, for better understanding of metal behaviour in aquatic organisms, it is crucial to identify cellular metal-binding biomolecules and their functions.


Asunto(s)
Cyprinidae/metabolismo , Branquias/metabolismo , Hígado/metabolismo , Metales/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Citosol/metabolismo , Proteínas de Peces/metabolismo , Hemoglobinas/metabolismo , Metalotioneína/metabolismo , Unión Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
19.
Chemosphere ; 224: 1-8, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30802779

RESUMEN

The aim of the study was to compare bacterial composition and load in waters and fish related to the wastewater treatment plant (WWTP), particularly waters and wild fish affected by sugarplant processing (sugar cane and sugar beet). Aeromonads were the most frequently isolated group from water and fish. A. hydrophila was a prevailing species in isolates from water, followed by A. veronii, Rheinheimera soli and Ochrobactrum anthropi. Of indicator bacteria for aquatic contamination from fish tissues, the most prominent were V. cholerae, Enterobacter cloacae and E. sakazakii. Sugar cane processing contributed to high viable cell counts at 37 °C while sugar beet processing contributed to high bacterial counts at 22 °C. Heterotrophs from gills of effluent fish were highest during sugar cane processing. Counts retrieved from fish skin were more uniform between effluent fish and fish from downstream waters. Antimicrobial resistance of bacteria isolated from water was high against amoxicillin, sulfamethoxazole, flumequine, norfloxacin and oxolinic acid in samples from the inflow of raw municipal wastewaters to WWTP, while resistance found in bacteria from the inflow of sugarplant mostly related to sulfamethoxazole and amoxicillin. The PCA analysis associated the occurrence of high heterotroph counts, P. aeruginosa, and intestinal enterococci on skin and gills with sugar cane, and yeasts and molds with sugar beet processing. Fish living in treated wastewaters and related water bodies could pose a microbial hazard if fished for human consumption, possibly causing infection when being handled and processed, as a risk of human pathogens penetrating fish tissues.


Asunto(s)
Bacterias/aislamiento & purificación , Azúcares de la Dieta , Exposición a Riesgos Ambientales , Peces/microbiología , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Aeromonadaceae , Animales , Enterococcus , Humanos , Aguas Residuales/química
20.
Int J Environ Health Res ; 29(2): 154-163, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30230363

RESUMEN

The carbapenem-resistant bacteria (CRB) are currently at the top of the WHO priority list of bacteria that pose the greatest threat to human health. Considering that soil is one of the important environments for the emergence of antibiotic-resistant bacteria, we isolated and quantified cultivable CRB in soils across Croatia, including ones affected by illegal dumps.We cultivated CRB at two temperatures, distinguishing between the intrinsically resistant CRB (37°C, mostly Stenotrophomonas spp.) and the ones that are presumably human-associated and clinically relevant (42°C, Acinetobacter sp., Enterobacteriaceae, Burkholderia spp.). Our study demonstrated that distinguishing between the two offers a better insight into the diversity of CRB in the environment. The ones cultivated at 37°C were found in almost all soil samples, while the presumably clinically relevant ones were absent from uncontaminated pasture and grassland, indicating that human-associated CRB are unlikely to be found in soils spared from anthropogenic influence.


Asunto(s)
Antibacterianos/farmacología , Bacterias/aislamiento & purificación , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana , Microbiología del Suelo , Instalaciones de Eliminación de Residuos , Bacterias/efectos de los fármacos , Bacterias/genética , Croacia , Instalaciones de Eliminación de Residuos/legislación & jurisprudencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...