Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Pharmacol Res Perspect ; 12(1): e1172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38284173

RESUMEN

While phosphodiesterase-5 inhibition (PED5i) may prevent hypertrophy and failure in pressure-overloaded heart in an experimental model, the impact of PDE5i on volume-overload (VO)-induced hypertrophy is unknown. It is also unclear whether the hypertrophied right ventricle (RV) and left ventricle (LV) differ in their responsiveness to long-term PDE5i and if this therapy affects renal function. The goal of this study was to elucidate the effect of PDE5i treatment in VO due to aorto-caval fistula (ACF) and to compare PDE5i treatment with standard heart failure (HF) therapy with angiotensin-converting enzyme inhibitor (ACEi). ACF/sham procedure was performed on male HanSD rats aged 8 weeks. ACF animals were randomized for PDE5i sildenafil, ACEi trandolapril, or placebo treatments. After 20 weeks, RV and LV function (echocardiography, pressure-volume analysis), myocardial gene expression, and renal function were studied. Separate rat cohorts served for survival analysis. ACF led to biventricular eccentric hypertrophy (LV: +68%, RV: +145%), increased stroke work (LV: 3.6-fold, RV: 6.7-fold), and reduced load-independent systolic function (PRSW, LV: -54%, RV: -51%). Both ACF ventricles exhibited upregulation of the genes of myocardial stress and glucose metabolism. ACEi but not PDE5i attenuated pulmonary congestion, LV remodeling, albuminuria, and improved survival (median survival in ACF/ACEi was 41 weeks vs. 35 weeks in ACF/placebo, p = .02). PDE5i increased cyclic guanosine monophosphate levels in the lungs, but not in the RV, LV, or kidney. PDE5i did not improve survival rate and cardiac and renal function in ACF rats, in contrast to ACEi. VO-induced HF is not responsive to PDE5i therapy.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Insuficiencia Cardíaca , Inhibidores de Fosfodiesterasa 5 , Remodelación Ventricular , Animales , Masculino , Ratas , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Cardiomegalia/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 5/farmacología
2.
PLoS One ; 18(4): e0283276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37053180

RESUMEN

Thermogenesis in brown adipose tissue (BAT) uses intracellular triglycerides, circulating free fatty acids and glucose as the main substrates. The objective of the current study was to analyse the role of CD36 fatty acid translocase in regulation of glucose and fatty acid utilisation in BAT. BAT isolated from spontaneously hypertensive rat (SHR) with mutant Cd36 gene and SHR-Cd36 transgenic rats with wild type variant was incubated in media containing labeled glucose and palmitate to measure substrate incorporation and oxidation. SHR-Cd36 versus SHR rats showed significantly increased glucose incorporation into intracellular lipids associated with reduced glycogen synthase kinase 3ß (GSK-3ß) protein expression and phosphorylation and increased oxidation of exogenous palmitate. It can be concluded that CD36 enhances glucose transport for lipogenesis in BAT by suppressing GSK-3ß and promotes direct palmitate oxidation.


Asunto(s)
Tejido Adiposo Pardo , Antígenos CD36 , Animales , Ratas , Tejido Adiposo Pardo/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Palmitatos/metabolismo , Ratas Endogámicas SHR , Ratas Transgénicas
3.
Metabolites ; 13(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36837811

RESUMEN

Recently, red beetroot has attracted attention as a health-promoting functional food. Studies have shown that beetroot administration can reduce blood pressure and ameliorate parameters of glucose and lipid metabolism; however, mechanisms underlying these beneficial effects of beetroot are not yet fully understood. In the current study, we analysed the effects of beetroot on parameters of glucose and lipid metabolism in two models of metabolic syndrome: (i) transgenic spontaneously hypertensive rats expressing human C-reactive protein (SHR-CRP rats), and (ii) hereditary hypertriglyceridemic (HHTg) rats. Treatment with beetroot juice for 4 weeks was, in both models, associated with amelioration of oxidative stress, reduced circulating lipids, smaller visceral fat depots, and lower ectopic fat accumulation in the liver compared to the respective untreated controls. On the other hand, beetroot treatment had no significant effects on the sensitivity of the muscle and adipose tissue to insulin action in either model. Analyses of hepatic proteome revealed significantly deregulated proteins involved in glycerophospholipid metabolism, mTOR signalling, inflammation, and cytoskeleton rearrangement.

4.
Curr Issues Mol Biol ; 44(5): 1889-1900, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35678658

RESUMEN

The efficacy of fenofibrate in the treatment of hepatic steatosis has not been clearly demonstrated. In this study, we investigated the effects of fenofibrate and silymarin, administered as monotherapy and in combination to existing hepatic steatosis in a unique strain of hereditary hypertriglyceridemic rats (HHTg), a non-obese model of metabolic syndrome. HHTg rats were fed a standard diet without or with fenofibrate (100 mg/kg b.wt./day) or with silymarin (1%) or with a combination of fenofibrate with silymarin for four weeks. Fenofibrate alone and in combination with silymarin decreased serum and liver triglycerides and cholesterol and increased HDL cholesterol. These effects were associated with the decreased gene expression of enzymes involved in lipid synthesis and transport, while enzymes of lipid conversion were upregulated. The combination treatment had a beneficial effect on the gene expression of hepatic cytochrome P450 (CYP) enzymes. The expression of the CYP2E1 enzyme, which is source of hepatic reactive oxygen species, was reduced. In addition, fenofibrate-induced increased CYP4A1 expression was decreased, suggesting a reduction in the pro-inflammatory effects of fenofibrate. These results show high efficacy and mechanisms of action of the combination of fenofibrate with silymarin in treating hepatic steatosis and indicate the possibility of protection against disorders in which oxidative stress and inflammation are involved.

5.
Antioxidants (Basel) ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255888

RESUMEN

Methylglyoxal (MG), a potent precursor of advanced glycation end-products (AGE), is increased in metabolic disorders such as diabetes and obesity. MG and other dicarbonyl metabolites are detoxified by the glyoxalase system in which glyoxalase 1, coded by the Glo1 gene, serves as the rate-limiting enzyme. In this study, we analyzed the effects of Glo1 downregulation on glucose and lipid metabolism parameters in spontaneously hypertensive rats (SHR) by targeting the Glo1 gene (SHR-Glo1+/- heterozygotes). Compared to SHR wild-type animals, SHR-Glo1+/- rats showed significantly reduced Glo1 expression and lower GLO1 activity in tissues associated with increased MG levels. In contrast to SHR controls, SHR-Glo1+/- rats exhibited lower relative weight of epididymal fat, reduced ectopic fat accumulation in the liver and heart, and decreased serum triglycerides. In addition, compared to controls, SHR-Glo1+/- rats showed reduced serum insulin and increased basal and insulin stimulated incorporation of glucose into white adipose tissue lipids (lipogenesis). Reduced ectopic fat accumulation in the heart was associated with significantly increased pAMPK/AMPK ratio and GLUT4 activity. These results provide evidence that Glo1 downregulation in SHR is associated with reduced adiposity and ectopic fat accumulation, most likely mediated by AMPK activation in the heart.

6.
J Diabetes Res ; 2019: 8712979, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886287

RESUMEN

INTRODUCTION: The development of metabolic syndrome-associated renal dysfunction is exacerbated by a number of factors including dyslipidemia, ectopic deposition of lipids and their toxic metabolites, impairment of lipid metabolism, and insulin resistance. Renal dysfunction is also affected by the production of proinflammatory and profibrotic factors secreted from adipose tissue, which can in turn directly impair kidney cells and potentiate insulin resistance. In this study, we investigated the manifestation of renal lipid accumulation and its effect on renal dysfunction in a model of metabolic syndrome-the hereditary hypertriglyceridemic rat (HHTg)-by assessing microalbuminuria and targeted urinary proteomics. Male Wistar control rats and HHTg rats were fed a standard diet and observed over the course of ageing at 3, 12, and 20 months of age. RESULTS: Chronically elevated levels of triglycerides in HHTg rats were associated with increased levels of NEFA during OGTT and over a period of 24 hours (+80%, P < 0.01). HHTg animals exhibited qualitative changes in NEFA fatty acid composition, represented by an increased proportion of saturated fatty acids (P < 0.05) and a decreased proportion of n-3 PUFA (P < 0.01). Ectopic lipid deposition in the kidneys of HHTg rats-triglycerides (+30%) and cholesterol (+10%)-was associated with markedly elevated microalbuminuria as ageing increased, despite the absence of microalbuminuria at the young age of 3 months in these animals. According to targeted proteomic analysis, 3-month-old HHTg rats (in comparison to age-matched controls) exhibited increased urinary secretion of proinflammatory parameters (MCP-1, IL-6, IL-8, P < 0.01) and decreased urinary secretion of epidermal growth factor (EGF, P < 0.01) before manifestation of microalbuminuria. Elevation in the urinary secretion of inflammatory cytokines can be affected by increased relative expression of MCP-1 in the renal cortex (P < 0.05). CONCLUSIONS: Our results confirm dyslipidemia and ectopic lipid accumulation to be key contributors in the development of metabolic syndrome-associated renal dysfunction. Assessing urinary secretion of proinflammatory cytokines and epidermal growth factor can help in detecting early development of metabolic syndrome-associated renal dysfunction.


Asunto(s)
Albuminuria/etiología , Citocinas/orina , Factor de Crecimiento Epidérmico/orina , Hipertrigliceridemia/complicaciones , Mediadores de Inflamación/orina , Enfermedades Renales/etiología , Lípidos/sangre , Síndrome Metabólico/complicaciones , Proteómica , Albuminuria/orina , Animales , Biomarcadores/sangre , Biomarcadores/orina , Modelos Animales de Enfermedad , Diagnóstico Precoz , Hipertrigliceridemia/sangre , Hipertrigliceridemia/genética , Hipertrigliceridemia/orina , Enfermedades Renales/sangre , Enfermedades Renales/orina , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Síndrome Metabólico/orina , Valor Predictivo de las Pruebas , Ratas Transgénicas , Ratas Wistar , Factores de Tiempo , Urinálisis
7.
PLoS One ; 14(8): e0220377, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404079

RESUMEN

BACKGROUND: Troxerutin (TRX) has a beneficial effect on blood viscosity and platelet aggregation, and is currently used for the treatment of chronic varicosity. Recently, TRX can improve lipid abnormalities, glucose intolerance and oxidative stress in high-fat diet-induced metabolic disorders. In this study, we tested the effect of TRX on metabolic syndrome-associated disorders using a non-obese model of metabolic syndrome-the Hereditary Hypertriglyceridaemic rats (HHTg). METHODS: Adult male HHTg rats were fed standard diet without or with TRX (150 mg/kg bwt/day for 4 weeks). RESULTS: Compared to untreated rats, TRX supplementation in HHTg rats decreased serum glucose (p<0.05) and insulin (p<0.05). Although blood lipids were not affected, TRX decreased hepatic cholesterol concentrations (p<0.01) and reduced gene expression of HMGCR, SREBP2 and SCD1 (p<0.01), involved in cholesterol synthesis and lipid homeostasis. TRX-treated rats exhibited decreased lipoperoxidation and increased activity of antioxidant enzymes SOD and GPx (p<0.05) in the liver. In addition, TRX supplementation increased insulin sensitivity in muscles and epididymal adipose tissue (p<0.05). Elevated serum adiponectin (p<0.05) and decreased muscle triglyceride (p<0.05) helped improve insulin sensitivity. Among the beneficial effects of TRX were changes to cytochrome P450 family enzymes. Hepatic gene expression of CYP4A1, CYP4A3 and CYP5A1 (p<0.01) decreased, while there was a marked elevation in gene expression of CYP1A1 (p<0.01). CONCLUSION: Our results indicate that TRX improves hepatic lipid metabolism and insulin sensitivity in peripheral tissues. As well as ameliorating oxidative stress, TRX can reduce ectopic lipid deposition, affect genes involved in lipid metabolism, and influence the activity of CYP family enzymes.


Asunto(s)
Hidroxietilrutósido/análogos & derivados , Hipolipemiantes/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Glucosa/metabolismo , Glucógeno/metabolismo , Hidroxietilrutósido/uso terapéutico , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Endogámicas , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma/efectos de los fármacos
8.
Front Pharmacol ; 10: 56, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30787874

RESUMEN

P-glycoprotein (P-gp) is a membrane-bound transporter encoded by Mdr1a/Abcb1a and Mdr1b/Abcb1b genes in rodents involved in the efflux of cytotoxic chemicals and metabolites from cells. Modulation of its activity influences P-gp-mediated drug delivery and drug-drug interaction (DDI). In the current study, we tested the effects of fenofibrate on P-gp mRNA and protein content in non-obese model of metabolic syndrome. Males hereditary hypertriglyceridemic rats (HHTg) were fed standard laboratory diet (STD) (Controls) supplemented with micronized fenofibrate in lower (25 mg/kg b. wt./day) or in higher (100 mg/kg b. wt./day) dose for 4 weeks. Liver was used for the subsequent mRNA and protein content analysis. Fenofibrate in lower dose decreased hepatic Mdr1a by 75% and Mdr1b by 85%, while fenofibrate in higher dose decreased Mdr1a by 90% and Mdr1b by 92%. P-gp protein content in the liver was decreased by 74% in rat treated with fenofibrate at lower dose and by 88% in rats using fenofibrate at higher dose. These findings demonstrate for the first time that fenofibrate decreases both mRNA and protein amount of P-gp and suggest that fenofibrate could affect bioavailability and interaction of drugs used to treat dyslipidemia-induced metabolic disorders.

9.
Artículo en Inglés | MEDLINE | ID: mdl-29731739

RESUMEN

BACKGROUND: Glucocorticoids (GCs) are potent therapeutic agents frequently used for treatment of number of conditions, including hematologic, inflammatory, and allergic diseases. Both their therapeutic and adverse effects display significant interindividual variation, partially attributable to genetic factors. We have previously isolated a seven-gene region of rat chromosome 8 sensitizing to dexamethasone (DEX)-induced dyslipidemia and insulin resistance (IR) of skeletal muscle. Using two newly derived congenic strains, we aimed to investigate the effect of one of the prime candidates for this pharmacogenetic interaction, the Zbtb16 gene. METHODS: Adult male rats of SHR-Lx.PD5PD-Zbtb16 (n = 9) and SHR-Lx.PD5SHR-Zbtb16 (n = 8) were fed standard diet (STD) and subsequently treated with DEX in drinking water (2.6 µg/ml) for 3 days. The morphometric and metabolic profiles of both strains including oral glucose tolerance test, triacylglycerols (TGs), free fatty acids, insulin, and C-reactive protein levels were assessed before and after the DEX treatment. Insulin sensitivity of skeletal muscle and visceral adipose tissue was determined by incorporation of radioactively labeled glucose. RESULTS: The differential segment of SHR-Lx.PD5SHR-Zbtb16 rat strain spans 563 kb and contains six genes: Htr3a, Htr3b, Usp28, Zw10, Tmprss5, and part of Drd2. The SHR-Lx.PD5PD-Zbtb16 minimal congenic strain contains only Zbtb16 gene on SHR genomic background and its differential segment spans 254 kb. Total body weight was significantly increased in SHR-Lx.PD5PD-Zbtb16 strain compared with SHR-Lx.PD5SHR-Zbtb16 , however, no differences in the weights of adipose tissue depots were observed. While STD-fed rats of both strains did not show major differences in their metabolic profiles, after DEX treatment the SHR-Lx.PD5PD-Zbtb16 congenic strain showed increased levels of TGs, glucose, and blunted inhibition of lipolysis by insulin. Both basal and insulin-stimulated incorporation of radioactively labeled glucose into skeletal muscle glycogen were significantly reduced in SHR-Lx.PD5PD-Zbtb16 strain, but the insulin sensitivity of adipose tissue was comparable between the two strains. CONCLUSION: The metabolic disturbances including impaired glucose tolerance, dyslipidemia, and IR of skeletal muscle observed after DEX treatment in the congenic SHR-Lx.PD5PD-Zbtb16 reveal the Zbtb16 locus as a possible sensitizing factor for side effects of GC therapy.

10.
Physiol Genomics ; 50(1): 52-66, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29127223

RESUMEN

Brown adipose tissue (BAT) has been suggested to play an important role in lipid and glucose metabolism in rodents and possibly also in humans. In the current study, we used genetic and correlation analyses in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), to identify genetic determinants of BAT function. Linkage analyses revealed a quantitative trait locus (QTL) associated with interscapular BAT mass on chromosome 4 and two closely linked QTLs associated with glucose oxidation and glucose incorporation into BAT lipids on chromosome 2. Using weighted gene coexpression network analysis (WGCNA) we identified 1,147 gene coexpression modules in the BAT from BXH/HXB rats and mapped their module eigengene QTLs. Through an unsupervised analysis, we identified modules related to BAT relative mass and function. The Coral4.1 coexpression module is associated with BAT relative mass (includes Cd36 highly connected gene), and the Darkseagreen coexpression module is associated with glucose incorporation into BAT lipids (includes Hiat1, Fmo5, and Sort1 highly connected transcripts). Because multiple statistical criteria were used to identify candidate modules, significance thresholds for individual tests were not adjusted for multiple comparisons across modules. In summary, a systems genetic analysis using genomic and quantitative transcriptomic and physiological information has produced confirmation of several known genetic factors and significant insight into novel genetic components functioning in BAT and possibly contributing to traits characteristic of the metabolic syndrome.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Animales , Predisposición Genética a la Enfermedad/genética , Glucosa/metabolismo , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Sitios de Carácter Cuantitativo/genética , Ratas , Ratas Endogámicas BN , Ratas Endogámicas SHR
11.
PLoS One ; 12(6): e0179063, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28586387

RESUMEN

Chronic low-grade inflammation plays an important role in the pathogenesis of insulin resistance. In the current study, we tested the effects of salsalate, a non-steroidal anti-inflammatory drug, in an animal model of inflammation and metabolic syndrome using spontaneously hypertensive rats (SHR) that transgenically express human C-reactive protein (SHR-CRP rats). We treated 15-month-old male transgenic SHR-CRP rats and nontransgenic SHR with salsalate (200 mg/kg/day) mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP and SHR rats were fed a standard diet without salsalate. In the SHR-CRP transgenic strain, salsalate treatment decreased circulating concentrations of the inflammatory markers TNF-α and MCP-1, reduced oxidative stress in the liver and kidney, increased sensitivity of skeletal muscles to insulin action and improved tolerance to glucose. In SHR controls with no CRP-induced inflammation, salsalate treatment reduced body weight, decreased concentrations of serum free fatty acids and total and HDL cholesterol and increased palmitate oxidation and incorporation in brown adipose tissue. Salsalate regulated inflammation by affecting the expression of genes from MAPK signalling and NOD-like receptor signalling pathways and lipid metabolism by affecting hepatic expression of genes that favour lipid oxidation from PPAR-α signalling pathways. These findings suggest that salsalate has metabolic effects beyond suppressing inflammation.


Asunto(s)
Proteína C-Reactiva/biosíntesis , Hipertensión/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Salicilatos/administración & dosificación , Tejido Adiposo Pardo/metabolismo , Animales , Animales Modificados Genéticamente/genética , Proteína C-Reactiva/genética , Ácidos Grasos no Esterificados/metabolismo , Humanos , Hipertensión/genética , Hipertensión/patología , Inflamación/genética , Inflamación/patología , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/genética , Síndrome Metabólico/patología , Proteínas NLR/biosíntesis , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/biosíntesis , Ratas , Factor de Necrosis Tumoral alfa/biosíntesis
12.
Hypertension ; 69(6): 1084-1091, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28396530

RESUMEN

The spontaneously hypertensive rat (SHR), one of the most widely used model of essential hypertension, is predisposed to left ventricular hypertrophy, myocardial fibrosis, and metabolic disturbances. Recently, quantitative trait loci influencing blood pressure, left ventricular mass, and heart interstitial fibrosis were genetically isolated within a minimal congenic subline that contains only 7 genes, including mutant Plzf (promyelocytic leukemia zinc finger) candidate gene. To identify Plzf as a quantitative trait gene, we targeted Plzf in the SHR using the transcription activator-like effector nuclease technique and obtained SHR line harboring targeted Plzf gene with a premature stop codon. Because the Plzf targeted allele is semilethal, morphologically normal heterozygous rats were used for metabolic and hemodynamic analyses. SHR-Plzf+/- heterozygotes versus SHR wild-type controls exhibited reduced body weight and relative weight of epididymal fat, lower serum and liver triglycerides and cholesterol, and better glucose tolerance. In addition, SHR-Plzf+/- rats exhibited significantly increased sensitivity of adipose and muscle tissue to insulin action when compared with wild-type controls. Blood pressure was comparable in SHR versus SHR-Plzf+/-; however, there was significant amelioration of cardiomyocyte hypertrophy and cardiac fibrosis in SHR-Plzf+/- rats. Gene expression profiles in the liver and expression of selected genes in the heart revealed differentially expressed genes that play a role in metabolic pathways, PPAR (peroxisome proliferator-activated receptor) signaling, and cell cycle regulation. These results provide evidence for an important role of Plzf in regulation of metabolic and cardiac traits in the rat and suggest a cross talk between cell cycle regulators, metabolism, cardiac hypertrophy, and fibrosis.


Asunto(s)
Perfilación de la Expresión Génica , Hipertensión/genética , Hipertensión/patología , Hipertrofia Ventricular Izquierda/genética , Factores de Transcripción de Tipo Kruppel/genética , Alelos , Análisis de Varianza , Animales , Determinación de la Presión Sanguínea , Western Blotting , Células Cultivadas , Regulación hacia Abajo , Hipertensión Esencial , Fibrosis/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Metabolismo de los Lípidos/genética , Masculino , Miocitos Cardíacos/metabolismo , Fenotipo , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Sitios de Carácter Cuantitativo , Ratas , Ratas Endogámicas SHR , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
13.
PLoS One ; 12(4): e0174820, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28369078

RESUMEN

BACKGROUND: Appetite and gastrointestinal hormones (GIHs) participate in energy homeostasis, feeding behavior and regulation of body weight. We demonstrated previously the superior effect of a hypocaloric diet regimen with lower meal frequency (B2) on body weight, hepatic fat content, insulin sensitivity and feelings of hunger compared to the same diet divided into six smaller meals a day (A6). Studies with isoenergetic diet regimens indicate that lower meal frequency should also have an effect on fasting and postprandial responses of GIHs. The aim of this secondary analysis was to explore the effect of two hypocaloric diet regimens on fasting levels of appetite and GIHs and on their postprandial responses after a standard meal. It was hypothesized that lower meal frequency in a reduced-energy regimen leading to greater body weight reduction and reduced hunger would be associated with decreased plasma concentrations of GIHs: gastric inhibitory peptide (GIP), glucagon-like peptide-1(GLP-1), peptide YY(PYY), pancreatic polypeptide (PP) and leptin and increased plasma concentration of ghrelin. The postprandial response of satiety hormones (GLP-1, PYY and PP) and postprandial suppression of ghrelin will be improved. METHODS: In a randomized crossover study, 54 patients suffering from type 2 diabetes (T2D) underwent both regimens. The concentrations of GLP-1, GIP, PP, PYY, amylin, leptin and ghrelin were determined using multiplex immunoanalyses. RESULTS: Fasting leptin and GIP decreased in response to both regimens with no difference between the treatments (p = 0.37 and p = 0.83, respectively). Fasting ghrelin decreased in A6 and increased in B2 (with difference between regimens p = 0.023). Fasting PP increased in B2with no significant difference between regimens (p = 0.17). Neither GLP-1 nor PYY did change in either regimen. The decrease in body weight correlated negatively with changes in fasting ghrelin (r = -0.4, p<0.043) and the postprandial reduction of ghrelin correlated positively with its fasting level (r = 0.9, p<0.001). The postprandial responses of GIHs and appetite hormones were similar after both diet regimens. CONCLUSIONS: Both hypocaloric diet regimens reduced fasting leptin and GIP and postprandial response of GIP comparably. The postprandial responses of GIHs and appetite hormones were similar after both diet regimens. Eating only breakfast and lunch increased fasting plasma ghrelin more than the same caloric restriction split into six meals. The changes in fasting ghrelin correlated negatively with the decrease in body weight. These results suggest that for type 2 diabetic patients on a hypocaloric diet, eating larger breakfast and lunch may be more efficient than six smaller meals during the day.


Asunto(s)
Restricción Calórica/métodos , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/fisiopatología , Comidas , Adulto , Anciano , Peso Corporal , Estudios Cruzados , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/psicología , Femenino , Polipéptido Inhibidor Gástrico/sangre , Ghrelina/sangre , Péptido 1 Similar al Glucagón/sangre , Humanos , Hambre/fisiología , Resistencia a la Insulina , Leptina/sangre , Masculino , Comidas/fisiología , Comidas/psicología , Persona de Mediana Edad , Polipéptido Pancreático/sangre , Péptido YY/sangre , Factores de Tiempo , Resultado del Tratamiento
14.
Lipids Health Dis ; 15(1): 199, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27871290

RESUMEN

BACKGROUND: Several members of connexin family of transmembrane proteins were previously implicated in distinct metabolic conditions. In this study we aimed to determine the effects of complete and heterozygous form of connexin50 gene (Gja8) mutation L7Q on metabolic profile and oxidative stress parameters in spontaneously hypertensive inbred rat strain (SHR). METHODS: Adult, standard chow-fed male rats of SHR, heterozygous SHR-Dca+/- and SHR-Dca-/- coisogenic strains were used. At the age of 4 months, dexamethasone (2.6 µg/ml) was administered in the drinking water for three days. The lipidemic profile (cholesterol and triacylglycerol concentration in 20 lipoprotein fractions, chylomicron, VLDL, LDL and HDL particle sizes) together with 33 cytokines and hormones in serum and several oxidative stress parameters in plasma, liver, kidney and heart were assessed. RESULTS: SHR and SHR-Dca-/- rats had similar concentrations of triacylglycerols and cholesterol in all major lipoprotein fractions. The heterozygotes reached significantly highest levels of total (SHR-Dca+/-: 51.3 ± 7.2 vs. SHR: 34.5 ± 2.4 and SHR-Dca-/-: 34.4 ± 2.5 mg/dl, p = 0.026), chylomicron and VLDL triacylglycerols. The heterozygotes showed significantly lowest values of HDL cholesterol (40.9 ± 2.3 mg/dl) compared both to SHR (51.8 ± 2.2 mg/dl) and SHR-Dca-/- (48.6 ± 2.7 mg/dl). Total and LDL cholesterol in SHR-Dca+/- was lower compared to SHR. Glucose tolerance was improved and insulin concentrations were lowest in SHR-Dca-/- (1.11 ± 0.20 pg/ml) in comparison with both SHR (2.32 ± 0.49 pg/ml) and SHR-Dca+/- (3.04 ± 0.21 pg/ml). The heterozygous rats showed profile suggestive of increased oxidative stress as well as highest serum concentrations of several pro-inflammatory cytokines including interleukins 6, 12, 17, 18 and tumor necrosis factor alpha. CONCLUSIONS: Our results demonstrate that connexin50 mutation in heterozygous state affects significantly the lipid profile and the oxidative stress parameters in the spontaneously hypertensive rat strain.


Asunto(s)
Conexinas/genética , Heterocigoto , Síndrome Metabólico/metabolismo , Mutación Missense , Animales , Colesterol/sangre , Citocinas/sangre , Insulina/sangre , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Estrés Oxidativo , Ratas , Ratas Endogámicas SHR , Triglicéridos/sangre
15.
PLoS One ; 11(3): e0152708, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27031336

RESUMEN

Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.


Asunto(s)
Animales Congénicos/genética , Cromosomas Humanos Par 16/genética , Síndrome Metabólico/genética , Ratas Endogámicas BN/genética , Ratas Endogámicas SHR/genética , Animales , Animales Congénicos/metabolismo , Animales Congénicos/fisiología , Genoma , Prueba de Tolerancia a la Glucosa , Hemodinámica , Humanos , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Metaboloma , Ratas Endogámicas BN/metabolismo , Ratas Endogámicas BN/fisiología , Ratas Endogámicas SHR/metabolismo , Ratas Endogámicas SHR/fisiología
16.
Physiol Genomics ; 48(6): 420-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27113533

RESUMEN

Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P < 0.05), significantly reduced both basal and insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P < 0.05). Gene expression profiles in BAT identified differentially expressed genes involved in skeletal muscle and connective tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Comunicación Autocrina/fisiología , Glucosa/metabolismo , Palmitatos/metabolismo , Resistina/genética , Tejido Adiposo Pardo/fisiología , Animales , Comunicación Autocrina/genética , Ácidos Grasos no Esterificados/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/genética , Mitocondrias/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Obesidad/metabolismo , Obesidad/fisiopatología , Oxidación-Reducción , Ratas , Ratas Endogámicas SHR , Ratas Transgénicas , Transcriptoma/genética
17.
PLoS One ; 11(3): e0150924, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26963617

RESUMEN

Inflammation and oxidative and dicarbonyl stress play important roles in the pathogenesis of type 2 diabetes. Metformin is the first-line drug of choice for the treatment of type 2 diabetes because it effectively suppresses gluconeogenesis in the liver. However, its "pleiotropic" effects remain controversial. In the current study, we tested the effects of metformin on inflammation, oxidative and dicarbonyl stress in an animal model of inflammation and metabolic syndrome, using spontaneously hypertensive rats that transgenically express human C-reactive protein (SHR-CRP). We treated 8-month-old male transgenic SHR-CRP rats with metformin (5 mg/kg/day) mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP rats were fed a standard diet without metformin. In a similar fashion, we studied a group of nontransgenic SHR treated with metformin and an untreated group of nontransgenic SHR controls. In each group, we studied 6 animals. Parameters of glucose and lipid metabolism and oxidative and dicarbonyl stress were measured using standard methods. Gene expression profiles were determined using Affymetrix GeneChip Arrays. Statistical significance was evaluated by two-way ANOVA. In the SHR-CRP transgenic strain, we found that metformin treatment decreased circulating levels of inflammatory response marker IL-6, TNFα and MCP-1 while levels of human CRP remained unchanged. Metformin significantly reduced oxidative stress (levels of conjugated dienes and TBARS) and dicarbonyl stress (levels of methylglyoxal) in left ventricles, but not in kidneys. No significant effects of metformin on oxidative and dicarbonyl stress were observed in SHR controls. In addition, metformin treatment reduced adipose tissue lipolysis associated with human CRP. Possible molecular mechanisms of metformin action-studied by gene expression profiling in the liver-revealed deregulated genes from inflammatory and insulin signaling, AMP-activated protein kinase (AMPK) signaling and gluconeogenesis pathways. It can be concluded that in the presence of high levels of human CRP, metformin protects against inflammation and oxidative and dicarbonyl stress in the heart, but not in the kidney. Accordingly, these cardioprotective effects of metformin might be especially effective in diabetic patients with high levels of CRP.


Asunto(s)
Proteína C-Reactiva/biosíntesis , Lipólisis/efectos de los fármacos , Metformina/farmacología , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piruvaldehído/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteína C-Reactiva/genética , Citocinas/metabolismo , Expresión Génica , Glucosa/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Lipólisis/genética , Masculino , Estrés Oxidativo/genética , Ratas , Ratas Endogámicas SHR , Ratas Transgénicas
18.
J Am Coll Nutr ; 35(4): 317-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26697823

RESUMEN

OBJECTIVE: Fatty acids are important cellular constituents that can affect many metabolic processes relevant for the development of diabetes and its complications. We previously demonstrated a positive effect of eating just 2 meals a day, breakfast and lunch, compared to 6 small meals. The aim of this secondary analysis was to explore the effect of meal frequency on the fatty acid composition of serum phospholipids in subjects with type 2 diabetes (T2D). METHODS: In a randomized, crossover study, we assigned 54 patients with T2D to follow one of 2 regimens of a hypocaloric diet (-500 kcal/day), each for 12 weeks: 6 meals (A6) or 2 meals a day, breakfast and lunch (B2). The diet in both regimens had the same macronutrient and energy content. The fatty acid composition of serum phospholipids was measured at weeks 0, 12, and 24, using gas liquid chromatography. Insulin sensitivity was derived as an oral glucose insulin sensitivity (OGIS) index. RESULTS: Saturated fatty acids (mainly myristic and palmitic acids) decreased (p < 0.001) and n6 polyunsaturated fatty acids increased (p < 0.001) in response to both regimens but more with B2 (p < 0.001 for both). Monounsaturated fatty acids decreased (p < 0.05) and n3 polyunsaturated fatty acids increased (p < 0.001) in response to both regimens, with no difference between the regimens. An increase in OGIS correlated positively with changes in the proportion of linoleic acid in B2. This correlation remained significant even after adjustment for changes in body mass index (BMI; r = +0.38; p = 0.012). CONCLUSIONS: We demonstrated that meal frequency affects the fatty acid composition of serum phospholipids. The B2 regimen had more marked positive effects, with saturated fatty acids and the ratio of saturated to unsaturated fatty acids decreasing more. The increase in linoleic acid could partly explain the insulin-sensitizing effect of B2 in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Dieta , Ácidos Grasos/sangre , Comidas , Fosfolípidos/sangre , Adulto , Anciano , Índice de Masa Corporal , Estudios Cruzados , Ácidos Grasos Monoinsaturados/sangre , Ácidos Grasos Insaturados/sangre , Femenino , Humanos , Ácido Linoleico/sangre , Masculino , Persona de Mediana Edad , Factores de Tiempo
19.
Hypertension ; 67(2): 335-41, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26667416

RESUMEN

Metabolism of homocysteine and other sulfur amino acids is closely associated with metabolism of folates. In this study, we analyzed the possible role of folates and sulfur amino acids in the development of features of the metabolic syndrome in the BXH/HXB recombinant inbred strains derived from the spontaneously hypertensive rat (SHR) and Brown Norway progenitors. We mapped a quantitative trait locus for cysteine concentrations to a region of chromosome 1 that contains a cis-acting expression quantitative trait locus regulating mRNA levels of folate receptor 1 (Folr1) in the kidney. Sequence analysis revealed a deletion variant in the Folr1 promoter region of the SHR. Transfection studies demonstrated that the SHR-promoter region of Folr1 is less effective in driving luciferase reporter gene expression than the Brown Norway promoter region of Folr1. Results in the SHR.BN-chr.1 congenic strain confirmed that the SHR variant in Folr1 cosegregates with markedly reduced renal expression of Folr1 and renal folate reabsorption, decreased serum levels of folate, increased serum levels of cysteine and homocysteine, increased adiposity, ectopic fat accumulation in liver and muscle, reduced muscle insulin sensitivity, and increased blood pressure. Transgenic rescue experiments performed by expressing a Folr1 transgene in the SHR ameliorated most of the metabolic disturbances. These findings are consistent with the hypothesis that inherited variation in the expression of Folr1 in the kidney influences the development of the metabolic syndrome and constitutes a previously unrecognized genetic mechanism that may contribute to increased risk for diabetes mellitus and cardiovascular disease.


Asunto(s)
Receptor 1 de Folato/genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Hipertensión/complicaciones , Riñón/metabolismo , Síndrome Metabólico/genética , ARN/genética , Animales , Presión Sanguínea/fisiología , Receptor 1 de Folato/biosíntesis , Variación Genética , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Ratas , Ratas Endogámicas BN , Ratas Endogámicas SHR , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Nutr Metab (Lond) ; 12: 52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26633989

RESUMEN

BACKGROUND: The marine n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert numerous beneficial effects on health, but their potency to improve treatment of type 2 diabetic (T2D) patients remains poorly characterized. We aimed to evaluate the effect of a combination intervention using EPA + DHA and the insulin-sensitizing drug pioglitazone in overweight/obese T2D patients already treated with metformin. METHODS: In a parallel-group, four-arm, randomized trial, 69 patients (66 % men) were assigned to 24-week-intervention using: (i) corn oil (5 g/day; Placebo), (ii) pioglitazone (15 mg/day; Pio), (iii) EPA + DHA concentrate (5 g/day, containing ~2.8 g EPA + DHA; Omega-3), or (iv) pioglitazone and EPA + DHA concentrate (Pio& Omega-3). Data from 60 patients were used for the final evaluation. At baseline and after intervention, various metabolic markers, adiponectin and cytokines were evaluated in serum using standard procedures, EPA + DHA content in serum phospholipids was evaluated using shotgun lipidomics and mass spectrometry, and hyperinsulinemic-euglycemic clamp and meal test were also performed. Indirect calorimetry was conducted after the intervention. Primary endpoints were changes from baseline in insulin sensitivity evaluated using hyperinsulinemic-euglycemic clamp and in serum triacylglycerol concentrations in fasting state. Secondary endpoints included changes in fasting glycemia and glycated hemoglobin (HbA1c), changes in postprandial glucose, free fatty acid and triacylglycerol concentrations, metabolic flexibility assessed by indirect calorimetry, and inflammatory markers. RESULTS: Omega-3 and Pio& Omega-3 increased EPA + DHA content in serum phospholipids. Pio and Pio& Omega-3 increased body weight and adiponectin levels. Both fasting glycemia and HbA1c were increased by Omega-3, but were unchanged by Pio& Omega-3. Insulin sensitivity was not affected by Omega-3, while it was improved by Pio& Omega-3. Fasting triacylglycerol concentrations and inflammatory markers were not significantly affected by any of the interventions. Lipid metabolism in the meal test and metabolic flexibility were additively improved by Pio& Omega-3. CONCLUSION: Besides preventing a modest negative effect of n-3 fatty acids on glycemic control, the combination of pioglitazone and EPA + DHA can be used to improve lipid metabolism in T2D patients on stable metformin therapy. TRIAL REGISTRATION: EudraCT number 2009-011106-42.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...